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Abstract
The paper develops a theoretic equilibrium model for ridesplitting markets with specific 
considerations of origin-destination demand patterns, competition with other transport 
modes, characteristics of en route matching, and spatial allocation of ridesplitting vehi-
cles, to adequately portray the intertwined relationships between the endogenous variables 
and decisions. The operation property of the market under distance-based unified pricing 
is analyzed through the response of system performance indicators to the decisions. More-
over, a gradient descent algorithm is derived to find optimal operating strategies in the 
monopoly scenario and social optimum scenario. Leveraging the tight connection between 
trip’s utility and level of service (LoS), the paper then proposes a utility-based compen-
sation pricing method to alleviate the inequity issue in ridesplitting, which results from 
the variance in waiting time and detour time and the implementation of unified pricing. 
Specifically, the trip fare of those with an initial utility smaller than a threshold will be 
compensated following a predefined compensation function. We compare its effectiveness 
and influence in different scenarios through numerical experiments at Munich. The results 
show that the proposed pricing method can improve the LoS and equity without losing any 
profit and welfare, and can even achieve increments in maximum profit and social welfare 
under certain conditions.

Keywords Ridesplitting · Market equilibrium · Pricing · Equity · Level of services

Introduction

Ridesplitting is an emerging ridesourcing service attracting much attention from industries, 
governments, individuals, and academics. (1) It has shown invaluable market potential from 
the day being launched, which has been uncovered by theoretical analyses and practices. 
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Transport network companies (TNCs) thus had successively proposed respective ridesplit-
ting programs, such as UberPool, Lyft Line, and Didi ExpressPool (Zhu et al. 2020; Chen 
et al. 2021; Wang and Yang 2019; Shaheen and Cohen 2019; Wang et al. 2021). (2) Like-
wise, its share nature also provides the possibility of alleviating the common ailments of 
modern cities caused by excessive traffic volumes, such as traffic jams and environmental 
degradation (Zhu et al. 2020; Alonso-Mora et al. 2017; Tachet et al. 2017; Abouelela et al. 
2022). As mentioned in Sperling (2018) and Agatz et al. (2012), combining people with 
close itineraries to fill the vacant seats in vehicles is an effective method for establishing 
sustainable transportation systems. To unleash ridesplitting’s potential for social benefits, 
governments are willing to provide financial support to promote its development. (3) From 
the perspective of individuals, ridesplitting has the superiority in convenience and flexibil-
ity compared to public transport and affordability compared to hailing a taxi or purchasing 
a car (Stiglic et al. 2016; Zhu et al. 2020; Li et al. 2021). (4) Nonetheless, the enormous 
stochasticity and uncertainty in ridesplitting impede its expansion to a large extent. Thus, 
more in-depth investigations into operations (e.g., matching mechanism), market assess-
ment (e.g., service placement), and impacts on multi-modal transportation systems (e.g., 
modal shift) are still in demand.

Rigorously, ridesplitting is “a form of ridesourcing where riders with similar origins 
and destinations are matched to the same ridesourcing driver and vehicle in real time, and 
the ride and costs are split among users”. This definition was initially presented in Shaheen 
et al. (2016) and was then adopted in many ridesplitting publications, such as Chen et al. 
(2017), Li et al. (2019b) and Zheng et al. (2019). We want to emphasize that riders with 
similar travel directions and suitable times (i.e., feasible for all passenger departures and 
arrivals) can be matched to the same ridesplitting vehicle, and the matching procedure will 
be constantly conducted for all vehicles throughout the working hours. A ridesplitting vehi-
cle can be dynamically paired with an arbitrary number of requests (fewer than the vehicle 
capacity) in the neighborhood, regardless of its status. In other words, ridesplitting allows 
en route matching and route changing in real time (Wang and Yang 2019; Chen et al. 2021; 
Wang et al. 2019).

Market models are a practical tool for analyzing market properties and designing appro-
priate operating strategies. While a few market models have been proposed for taxi (e.g., 
He et  al. 2018) and regular ridesourcing services (e.g., Ke et  al. 2020a), no endeavors 
have been dedicated to ridesplitting markets. One reason is that the dynamics in matching 
and routing indeed complicate their construction. More specifically, the interdependence 
among system exogenous (e.g., vehicle fleet size and trip fare) and endogenous variables 
(e.g., demand and detour time) are hard to parse. To this end, we formulate a ridesplitting 
market equilibrium (ME) model in this study with further considerations of spatial het-
erogeneity of demand patterns (i.e., modeling at the network level), competition between 
ridesplitting and other transport modes that is always overlooked in the existing literature, 
and spatial allocation of ridesplitting vehicles. Such a ME model can offer more accurate 
insights into ridesplitting markets (Bimpikis et al. 2019) and help transportation manage-
ment agencies and ridesourcing companies tailor the ridesplitting service to adapt to mar-
ket preference so as to improve the penetration rate (Li et al. 2019b).

Despite the improvement in the level of service (LoS) compared to public transit and 
taxi services (Ma et al. 2019), the deviation of waiting and detour time among ridesplit-
ting passengers, together with the conventional distance-based or time-based unified pric-
ing methods, leads to the inequity of the service. For example, conditional on a platform 
adopting distance-based pricing, two requests with identical origin-destination (OD) will 
be charged the same but may have different waiting times and detouring times. Clearly, the 
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inequity problem will halt the modal shift to ridesplitting services. Therefore, we develop 
a utility-based compensation pricing method to improve the LoS equity of ridesplitting, 
given the tight connection between passenger preference and LoS (de Ruijter et al. 2020; 
Ma et al. 2019).

The contributions of this paper are three-fold as follows. (1) We establish a mathemati-
cal model to describe the sophisticated interactions between the decision variables and the 
system’s endogenous variables in the ridesplitting markets with consideration of modal 
split among multiple transportation modes. The long-term expected values of the endog-
enous at the stationary equilibrium under a given operation strategy can then be estimated 
by the ME model. (2) We then derive the optimal operation strategies for profit maximiza-
tion and social welfare maximization scenarios, and investigate the operation properties of 
the two scenarios. (3) More importantly, we propose a novel utility-based compensation 
pricing method to mitigate the common inequity issue in ridesplitting services, which is 
caused by the dynamics in matching and routing together with the conventional unified 
pricing methods. Utilizing the ME model, the effectiveness of the method is validated by 
the numerical experiments conducted in the network of Munich city, Germany.

The remainder of the paper is structured as follows. In section Related literature, we 
review existing studies on ME models and pricing methods in shared ride services. Sec-
tion  Ridesplitting market equilibrium model formulates a network-based equilibrium 
model for ridesplitting markets. Section Market scenarios and optimal operation strategies 
under distance-based unified pricing presents the derivation of monopoly optimum and 
social optimum solutions under distance-based pricing. In section Utility-based compensa-
tion pricing, we propose a utility-based compensation pricing method with the purpose of 
improving the LoS and equity. In section Numerical experiments, numerical experiments 
are conducted to evaluate the performance of the proposed market model and the effec-
tiveness of the compensation method in different scenarios. Section Discussion discusses 
the limitations of the paper and some future extensions. Finally, conclusions are drawn in 
section Conclusions.

Related literature

This section reviews the literature in (1) transportation market equilibrium models that can 
guide the formulation of ridesplitting markets and representative market scenarios, and (2) 
pricing methods in shared ride services that can help understand the principle and consid-
eration behind fare structures.

Transportation market equilibrium models

Cairns and Liston-Heyes (1996) developed an equilibrium model for the taxi market to 
understand the competition in the industry. It found that the unregulated industry does not 
satisfy the conditions of competition, and the existence of equilibrium depends on the reg-
ulation of price, entry, and intensity of use of licensed taxis. Besides, it also formulated the 
models of monopoly, the social optimum, and the second-best in the taxi industry. How-
ever, it did not consider the spatial difference in demand patterns. An initial attempt to 
model the taxi market at a network level considering the OD demand pattern was in Yang 
and Wong (1998). They then improved the model in a series of works by further incorpo-
rating demand elasticity and congestion effect (Wong et al. 2001), exploring the impacts 
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of regulatory restraints on the equilibrium (Yang et al. 2002). Later, the improved model 
was applied to investigate the performance of nonlinear fare structures on the perceived 
profitability in Yang et al. (2010). He et al. (2018) gave another shot in modeling the taxi 
market equilibrium at the network level with specific consideration of both street-hailing 
and e-hailing modes. The unique reservation-cancellation behavior of e-hailing customers 
differentiating the two operation modes was explicitly contemplated in the market model.

In some sense, taxi ME models can shed light on the research of equilibrium in the 
shared transportation markets due to their implicit resemblance. Adopting the modeling 
framework of previous works on the taxi industry, Ke et  al. (2020a) presented an equi-
librium model for ridepooling markets and elucidated the complex relationships between 
endogenous variables and decision variables (trip fare, vehicle fleet size, and allowable 
detour time). It proved that the monopoly optimum, first-best, and second-best social opti-
mum are always in the regular regime rather than the wild goose chase (WGC) regime1. 
However, it restricted the problem in the situation with at most two passengers sharing a 
trip. In addition, the market was modeled at an aggregate level without considering the net-
work structure and OD demand patterns. In contrast, Bimpikis et al. (2019) formulated the 
network-level equilibrium state for a ridesharing matching agency. It pointed out that only 
when the demand pattern2 across the network is balanced the benefit of applying spatial 
price discrimination can be observed. Leveraging the spatial pricing method can promote 
the demand pattern balance.

Although the models developed in the works above perform well, there is still room for 
improvement. First, none of them considered passenger preference in the presence of mul-
tiple transport modes. The value of time (or willingness to pay) of passengers is the only 
factor being considered in their modeling framework regardless of the service attributes 
of other transport options and the relatively constant total travel demand within the city 
in the short term. This will result in an inaccurate demand estimation when the service 
attributes are not superior to the others. Second, no work has established a network-based 
equilibrium model for ridesplitting markets that can capture the travel demand patterns and 
network characteristics.

Pricing methods in shared ride services

Demand estimation is the main focus of pricing strategies for shared ride services. Some 
aim to capture the temporal elasticity of demand to find optimal solutions for a specific 
objective (e.g., profit maximization) (Sayarshad and Chow 2015; Qian and Ukkusuri 
2017). Some try to improve the reliability of the proposed solution by considering the 
spatial heterogeneity of demand over the network (Chen and Kockelman 2016; Guo et al. 
2017; Qiu et al. 2018; Bimpikis et al. 2019). Furthermore, the users’ heterogeneity, which 
is represented by passenger preference/behavioral models, is also crucial in demand mod-
eling and has been heavily researched in the literature (Chen and Kockelman 2016; Qiu 
et al. 2018; Guan et al. 2019).

1 The wild goose chase regime is an inefficient equilibrium where vehicles take substantial time to pick up 
riders.
2 Demand pattern of a network is defined as a combination of a demand vector for zones and a weighted 
adjacency matrix. And it is said to be balanced if, at each zone, the potential demand for rides weakly 
exceeds the available drivers in the same zone after completing rides.



Transportation 

1 3

Sayarshad and Chow (2015) proposed a non-myopic pricing method for the non-myopic 
dynamic dial-a-ride problem to maximize social welfare under the assumption of elastic 
demand. It pointed out that ignoring the elasticity of demand can overestimate the improve-
ment in LoS with non-myopic considerations. Inspired by the demand elasticity among a 
day, Qian and Ukkusuri (2017) developed a time-of-day pricing scheme to maximize the 
profit of taxi service. It suggested that a strict pricing scheme should consider both tempo-
ral heterogeneity and spatial heterogeneity in demand, together with additional considera-
tion of users heterogeneity in price elasticity. He et al. (2018) presented a penalty/compen-
sation strategy to restrain the reservation cancellation behavior at e-hailing taxi platforms 
and further designed optimal strategies to maximize profit for private operators and social 
welfare for public transportation agencies.

Regarding passenger preference, some applied the Multinomial Logit (MNL) model 
to estimate the mode share of shared ride services, such as in the agent-based frame-
work for shared autonomous electric vehicle (SAEV) presented in Chen and Kockelman 
(2016). Chen and Kockelman (2016) also investigated the trade-offs between the revenue 
and SAEV mode share under different pricing schemes (e.g., distance-based pricing, ori-
gin-based pricing). Integrating the passenger preference, demand distribution, and traffic 
information of the network, Qiu et al. (2018) proposed a dynamic programming framework 
to solve the profit maximization problem for a monopolistic private shared mobility-on-
demand service (SMoDS) operator. Also, the MNL model was used to model the passen-
ger preference and was integrated into the price optimization model at the request level.

With the consideration of demand difference over the network, Bimpikis et al. (2019) 
established an infinite-horizon, discrete-time model for ridesharing services, and explored 
the impact of the demand pattern on the platform’s prices, profits, and the induced con-
sumer surplus. Furthermore, considering the uncertainty of travel time and waiting time in 
SMoDSs, Guan et al. (2019) applied the Cumulative Prospect Theory (CPT) to capture the 
subjective decision making of passengers under uncertainty. A dynamic pricing strategy 
was proposed on the passenger behavioral model based on CPT.

Although the inequity among individual trips is a common phenomenon in the ridesplit-
ting services, it has not been addressed in the existing literature. As mentioned in Sect.1, 
the inequity issue primary comes from the dynamics in matching and routing, and con-
ventional unified pricing methods. Thus, it is desirable to develop a practical compensa-
tion method on the basis of the conventional pricing method (e.g., distance-based unified 
pricing) to compensate every single trip according to the respective perceived LoS so as to 
promote the equity of ridesplitting services.

Ridesplitting market equilibrium model

Fig. 1 provides an operational example of a ridesplitting service vehicle. Consider a ride-
splitting vehicle currently at C1 location and is going to C2 to pick up (or drop off) a pas-
senger. The vehicle receives another request arising in C3 and has two options: (1) it first 
follows the previous route to C2 and then drives to C3 (either immediately or after finishing 
some other missions, e.g., after driving to C4 to pick up or drop off another passenger); (2) 
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it first picks up the request in C3 and then drives to C2 (either immediately or after visiting 
some places, e.g., C4). Note that, in general, the optimal order of pickups and dropoffs is 
updated automatically using dedicated scheduling algorithms that consider all trips’ origin-
destinations for matching, instead of the order the requests were accepted3. This simple 
example demonstrates the extreme dynamics of ridesplitting services.

We want to emphasize that the picking up status specified for ridepooling vehicles does 
not exist in this ridesplitting case, as vehicles are always in the matching pool even when 
they are on the way to pick up passengers. As a result, the pick-up time will be accounted 
for as a part of passenger waiting time in the ridesplitting market and will not be specifi-
cally modeled. Further, due to the presence of other transportation options, passengers who 
are not matched to ridesplitting vehicles will be naturally counted in the demand for other 
transport modes. In other words, the probability of using ridesplitting is somewhat repre-
senting matching probability, which is consistent with the assumption adopted in Alexan-
der and González (2015). The matching probability in ridesplitting is thus not defined in 
modeling.

System variables in the ridesplitting market

Figure 2 depicts the interaction between the variables in a ridesplitting market. Variables 
are categorized into two groups, i.e., exogenous variables and endogenous variables. Exog-
enous variables include the decision variables of the ridesplitting service and the attrib-
utes of other transport options, while endogenous variables are those decided by the ride-
splitting market per se, including the waiting time, detour time, ridesplitting demand, and 
vacant seat hours, etc. The system mainly contains two function modules: pricing method 
and passenger preference. The adopted pricing method decides the trip fare of ridesplitting 
services. Passenger preference simulates the interplay between the passenger demand, the 
expected detour time, and waiting time. The attributes of all transport modes, such as the 
expected waiting time, expected travel time, and trip fare of public transport, are inputted 
into the passenger preference module to estimate mode share. Note, with the attributes of 

Fig. 1  Operation of ridesplitting 
serivces

3 Uber also provides a similar description of taking a ridesplitting (UberPool) trip: https:// www. uber. com/ 
au/ en/ drive/ servi ces/ shared- rides/ (Accessed 8 July 2022).

https://www.uber.com/au/en/drive/services/shared-rides/
https://www.uber.com/au/en/drive/services/shared-rides/


Transportation 

1 3

other transportation modes fixed, the trip fare and vehicle fleet size of the ridesplitting ser-
vice are two unique decisions of the system.

Generally, the expected waiting time is deemed to be related to the number of available 
vehicles (Cairns and Liston-Heyes 1996; Li et al. 2019a; Ke et al. 2020a). Considering the 
sharing nature of the ridesplitting service (ride requests can be matched en route with vehicles 
that have vacant seats), we revise this assumption as: the expected waiting time depends on the 
number of available seats. Seat availability is affected by both the vehicle fleet size and ride-
splitting demand. Moreover, due to the interdependence among the system endogenous, seat 
availability also indirectly affects the expected detour time.

In the remainder of this section, how the variables interact is explained in detail, and the 
method to calculate the ME is presented. Given the exogenous variables, the values of system 
endogenous variables will then be inherently derived by the ME model.

Supply of ridesplitting services

Each trip has its origin and destination. Different from the existing works based on abstract 
and aggregate demand-supply models, we model the ridesplitting market at the network level 
with the consideration of the network structure and traveler OD demand pattern. Consider a 
network that allows the travel between OD pairs in set ℤ . For an OD pair i in ℤ , its origin and 
destination are denoted as io and id , respectively. For a given hour (the studying interval is set 
to one hour), the travel demand for i (i.e., the number of trips from io to id ) is Di . We denote 
Pi,rs as the mode share of ridesplitting services of i at the ME state, where rs indicates ride-
splitting. Then, the passenger demand for ridesplitting from io to id is estimated by

Fig. 2  Relationships between exogenous variables and endogenous variables in the ridesplitting market, 
adapted from Ke et al. (2020a)
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We know that each seat in ridesplitting vehicles can be either vacant or occupied. We 
define available seat capacity Hv as the number of vacant seats in stationary equilibrium 
while utilized seat capacity Hc as the number of occupied seats. For a given hour, the con-
servation equation of seat capacity is thus given by

where N is vehicle fleet size, ns is the number of seats in a vehicle.
Note that the travel time for a passenger in ridesplitting services consists of two compo-

nents: direct trip time (equals to the travel time of driving private cars without detouring) 
and detour time (due to the detouring to pick-up and/or drop-off other passengers). Thus, 
the expected travel time of i is given by

where ti is the expected travel time from io to id , td
i
 and t̃i denote the direct trip time and the 

expected detour time, respectively. The utilized seat capacity in one hour then can be cal-
culated as

Substitute Equation (4) into Equation (2) resulting in

This seat capacity conservation equation bridges the demand for and supply of ridesplitting 
services and must be satisfied in the ME state. Remarkably, it tells that the total quantity of 
ridesplitting service supplied to the passengers ( Nns ) is greater than the equilibrium quan-
tity demanded ( Hc ) by a certain amount of slack ( Hv ), which is analogous to other mobility 
service markets. This is also the principle behind the waiting time estimation.

Demand for ridesplitting services

Fig. 2 shows that the passenger preference model is the core of the market model of the 
ridesplitting service. Agatz et al. (2012) and Chen et al. (2017) also pointed out that under-
standing participants’ behaviors and preferences is essential for dynamic ridesharing sys-
tem design and demand modeling, though preferences modeling may be difficult and time-
consuming. The preference model needs to aggregate the effects of changes in supply and 
demand to simulate the response of travelers to the changes. To estimate the ridesplitting 
passenger demand, we assume all travelers make decisions objectively based on the per-
ceived utilities of the available transport modes. As the easiest and the most used discrete 
choice model for estimating the travel behaviors of individuals (Train 2009), the Multi-
nomial Logit (MNL) model has been applied in many aspects of the transportation com-
munity, including the transport mode choice behavior (Vrtic et al. 2010; Chen et al. 2013; 
Krueger et al. 2016). This study also applies MNL to capture passenger preference in the 
multi-modal transport context. Based on the random utility theory, the utility of choice can 
be calculated by

(1)Qi = DiPi,rs

(2)Nns = Hv + Hc

(3)ti = td
i
+ t̃i

(4)Hc =
∑

i∈ℤ

Qiti

(5)Nns = Hv +
∑

i∈ℤ

Qiti
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where U is the utility, V is the deterministic component of the utility, and � is the 
disturbance.

Many factors are closely related to the consumers’ intention to use ridesplitting ser-
vices (Wang et al. 2020), such as personal inventiveness and environmental awareness. 
We refer to a recent study, Abouelela et al. (2022), a comprehensive investigation of the 
factors influencing the shift to shared ride services. Nevertheless, time cost and mon-
etary cost are the main factors influencing passengers’ choice among the available trans-
portation options. Considering the discrepancy between the perceptions of travel time 
and waiting time, the utility function (the deterministic part of the utility) of taking one 
transport mode can be evaluated as

where t, w, and r denote travel time, waiting time, and trip fare. �t, �w and �r are the corre-
sponding preference coefficients.

Assuming the disturbance term � follows the Gumbel distribution, the probability of 
one (from io to id ) choosing ridesplitting services is then given by

where � is the set of available transport modes in the system.
Combining Equation (8) and Equation (1), we can estimate the ridesplitting demand 

for i by (omit the subscript rs in the following text)

where �i =
∑

j∈{��rs} e
Vi,j aggregates the utilities of the options excluding ridesplitting for 

ease of representation.

Expected detour time modeling

Real operations data shows that the average detour time between two passengers in rides-
ourcing services is inversely proportional to the demand for the service (Ke et al. 2020a, 
b). Mathematically, the average detour time between two passengers can be estimated by 
t̃(2) = Ã∕

∑
j Qj , where Ã is a market-specific parameter. 

∑
j is for 

∑
j∈ℤ in the following text 

unless otherwise noted. We follow this average detour time model but relax the two-pas-
sengers-most restriction (two ride requests are pooled in the ridepooling services at most), 
which is also adopted in Wang et al. (2021), to the general case. Intuitively, the increase 
in the number of requests can shorten the average distance between every two passengers, 
reducing the average detour time. However, it also increases the possibility of pairing more 
passengers for a vehicle and, therefore, increases the detour time. The subtle contradictory 
effects of the demand increase should be incorporated into the detour time model.

Let t̄d
Q
 denote the mean of direct trip time of all trips, then t̄d

Q
=
∑

j Qjt
d
j
∕
∑

j Qj . If there 
is no detouring, the maximum number of requests a vehicle can serve in one hour (without 

(6)U = V + �

(7)V = �tt + �ww + �rr

(8)Pi,rs =
eVi,rs

∑
j∈� eVi,j

(9)Qi =
Die

Vi

eVi + �i
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deadhead time between consecutive requests) is given by n(t) = 1∕t̄d
Q
 . However, due to the 

limitation of vehicle fleet size, the number of trips assigned to a vehicle is n(a) =
∑

j Qj∕N . 
As a result, the expected number of passengers in a vehicle is na∕nt . The detour time of a 
vehicle is then given by (the time to pick up the first passenger is also counted)

Moreover, we follows the assumption in Ke et al. (2020a): the detour time of passengers is 
a fraction of the detour time of vehicles, i.e., t̃(p) = 𝛾 t̃(v) , where � ∈ (0, 1) . In the ridesplit-
ting markets, vehicles and passengers are matched en route, and vehicles are allowed for 
detouring within the neighborhood to pick up new requests. This complicates the problem. 
Nevertheless, it is plausible to impose the following assumption:

Assumption 1 Given the network structure, trips with longer direct trip time are more 
likely to have a detour.

For a OD pair i, we thus introduce a modificator, td
i
/t̄d , to capture the network spatial dif-

ference in the detouring probability. The detour time of i can then be expressed as

For simplicity of presentation, we define A ≜ 𝛾Ã and Ai ≜ Atd
i
∕t̄d , such that

The expected detour time model implies the detour time is correlated to the spatial charac-
teristics of the network structure ( Ai,∀i ), the vehicle fleet size (N) and the spatial distribu-
tion of ridesplitting demand ( 

∑
j Qjt

d
j
 ). Note that ridesplitting encompasses many dynam-

ics due to the allowance of dynamic route variation and en route matching. Ridesplitting 
vehicles can search a wider area for requests, which significantly challenges the integration 
of vehicle allocation to the detour time modeling. Nevertheless, the vehicle allocation is 
specifically considered in the waiting time model described in the following subsection.

Expected waiting time modeling

As per Li et al. (2019a), if assuming the matching process of riders and vehicles follows 
the Cobb-Douglas type production function, the expected waiting time can be derived to 
be inversely proportional to the square root of the number of idle vehicles. Considering the 
sharing nature of ridesplitting services and the possibility of matching en route, we make 
the following assumption:

Assumption 2 The waiting time of the ridesplitting service is inversely proportional to the 
square root of the available seat capacity.

(10)t̃(v) =
n(a)

n(t)
t̃
(2)

i

(11)t̃i =
td
i

t̄d
t̃(p) =

td
i
𝛾Ã

∑
j Qjt

d
j

t̄dN
∑

j Qj

(12)t̃i =
Ai

∑
j Qjt

d
j

N
∑

j Qj
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In addition, we adapt this assumption for fitting network-level modeling by considering 
(i) the effect when demand exceeds supply offered to the respective OD pair, (ii) the spatial 
difference of vehicle allocation, and (iii) the supply attraction relative to demand in the 
neighborhood. Mathematically, the expected waiting time for trips from io to id is estimated 
by

where B is a market-specific parameter.
Q�

i
 ( 𝜃 > 0 ) is used to incorporate the first consideration, i.e., demand exceeds the supply 

offered to i, where � measures the intensity of the influence. Higher demand would stimu-
late a “competition" among passengers for the limited supply, especially when the demand 
is greater than the supply. This is in line with the waiting time model in the network-level 
e-hailing taxi market constructed in He et al. (2018).

�i ∈ (0,1) is a percentage value measuring the vacant seat capacity assigned to i, for 
incorporating the second consideration. Note that 

∑
j �j = 1 . The vacant seats are distrib-

uted/allocated over the network in accordance with the spatial characteristics of OD pairs, 
such as the distance of the origin and destination to the city center (denote by �io and �id , 
respectively, for i) and the OD distance (denote by di ). For OD pairs near the city center, 
their waiting time is shorter since more vehicles drive through the city center and thus 
more supply (Li et al. 2019b). Tu et al. (2021) also found that the distance to city center 
is one of the key influencing factors of ridesplitting ratio. Likewise, the distance between 
io and id also determines if the vehicles are willing to detour to catch these requests. For 
example, Fig. 3 depicts a homogeneous network with 25 zones. The waiting time of trips 
from C1 to C2 should be less than from C3 to C4, as �C1 is similar to �C3 but �C2 is far 
smaller than �C4 . The waiting time from C1 to C3 should also be short as C1 is close to C3 
despite being far from the city center.

In this study, we apply the form of inverse distance weighting function to calculate the 
seats distribution as below.

(13)wi =
BQ�

i

�i

�
�i(Nns −

∑
j Qjtj)

Fig. 3  Consideration of vehicle 
allocation
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where �c and �d are positive parameters for measuring the influence of the proximity to the 
city center and OD distance, respectively, and � ( 𝜌 > 0 ) is the power parameter.

Intrinsically, �i captures the inherent spatial characteristics of the network structure. In 
contrast, 𝛺i(𝛺i > 0) is used to measure the supply attraction induced by the relatively high 
demand for the neighboring pairs (i.e., the third consideration), which essentially depends 
on the temporal demand patterns of the market. To clarify, ridesplitting can match pas-
sengers with either closer origins or destinations or both (Wang et al. 2019). Specifically, 
𝛺i > 1 means more vehicles are coming to serve the neighboring pairs of i and vice versa. 
Here neighboring pairs are defined as follows:

Definition 3.1 Neighboring pairs of i are the OD pairs from the zones within the neighbor-
hood of io to the zones within the neighborhood of id . The neighborhood of a zone is the 
area that can reach the zone within a time interval (or a distance threshold) �̄� , including the 
zone of interest.

A graphical example is provided in Fig. 4. All OD pairs from the neighborhood of io to 
that of id are the neighboring pairs of i, such as C1 → id . �i , named as supply attraction 
factor, is given by

where nz is the number of OD pairs in ℤ , ℤi is the set of neighboring pairs of i which is a 
subset of ℤ . �i also reflects that ridesplitting vehicles are allowed deviating from a given 
path within a service area, which is a commonality with the Mobility Allowance Shuttle 
Transport (MAST) service (Quadrifoglio et al. 2008).

For simplicity of presentation, we define Bi ≜ B∕
√
�i , such that

Equilibrium in the ridesplitting markets

From Fig. 2, we know that both expected detour time t̃ and expected waiting time w are 
related to the vehicle fleet size N and ridesplitting demand Q ( Hv can be replaced by N and 
Q). Here Q is the vector of ridesplitting demand for all OD pairs. Thus, with a slight abuse 

(14)�i =

�
(�io + �id )

�cd
�d
i

�−�

∑
j

�
(�jo + �jd )

�cd
�d
j

�−�

(15)�i =
nz
∑

j∈ℤi
Qj

∑
k∈ℤ

∑
j∈ℤk

Qj

(16)wi =
BiQ

�
i

�i

�
Nns −

∑
j Qjtj

Fig. 4  Definition of buffer areas
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of notation, we can rewrite detour time and waiting time as t̃(Q,N) and w(Q, N), respec-
tively. Recall that the expected travel time is the sum of direct trip time and expected detour 
time, so we can rewrite the travel time as t(Q, N). The utility function for ridesplitting ser-
vices is then given by

Substituting Equation (17) into Equation (9), the ridesplitting passenger demand thus 
becomes an implicit function of itself.

The ME in the ridesplitting market is the ultimate stable state of the market (the supply-
demand interaction eventually damps out), at which the relationships between the system 
endogenous variables (e.g., passenger demand, average detour time) can be satisfied under 
a specific operation strategy (e.g., vehicle fleet size, trip fare). Mathematically, the demand-
supply equilibrium is established when both demand and supply equations are satisfied 
simultaneously (Arrow and Debreu 1954). More specifically, under certain operation strat-
egies, an equilibrium in a ridesplitting market is a set of values of t̃i,wi and Qi that satisfies 
the equations system composed of Equation (5), (12) and (16)–(18) for all i in ℤ . For con-
venience, we put them below.

It is worth pointing out that Equation (5) and the set of Equation (18) given different i 
describe the supply of and demand for ridesplitting services, respectively. In practice, this 
equations system can be solved via a hybrid method for nonlinear equations proposed in 
Powell (1970). Our numerical experiments indicate that the resultant solutions are always 
unique under rational operation strategies.

(17)Vi(Q,N) = �tti(Q,N) + �wwi(Q,N) + �rri

(18)Qi =
Die

Vi(Q,N)

eVi(Q,N) + �i

(19)

Nns = Hv +
�

i

Qiti

t̃i =
Ai

∑
j Qjt

d
j

N
∑

j Qj

,∀i ∈ ℤ

wi =
BiQ

𝜃
i

𝛺i

�
Nns −

∑
j Qjtj

,∀i ∈ ℤ

𝛺i =
nz
∑

j∈ℤi
Qj

∑
k∈ℤ

∑
j∈ℤk

Qj

,∀i ∈ ℤ

Vi(Q,N) = 𝛽tti(Q,N) + 𝛽wwi(Q,N) + 𝛽rri,∀i ∈ ℤ

Qi =
Die

Vi(Q,N)

eVi(Q,N) + 𝜇i

,∀i ∈ ℤ
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Market scenarios and optimal operation strategies 
under distance‑based unified pricing

This study investigates the inequity problem among individual trips in ridesplitting ser-
vices caused by the combined effect of deviation in travel time and the commonly used uni-
fied pricing. Ridesplitting services can be operated by either private companies or public 
transportation agencies, leading to the difference in operation objective and inequity sever-
ity. Hence, it is very important to analyze the market performance under the unified pricing 
method and compare different market scenarios. This section introduces two representative 
scenarios extensively discussed in the literature and shown in actual operation as below. 

(1) Monopoly scenario. A monopolist aims to maximize its profit.
(2) Social optimum scenario. The platform aims to maximize social welfare.

As mentioned in Li et al. (2019b), the payment of ridesplitting services is mostly based on 
the actual travel time and distance of the trip. Without loss of generality, based on the pro-
posed network equilibrium, we derive an algorithm to find the optimal solutions for the two 
scenarios under distance-based unified pricing. One should be able to extend it to the case 
of time-based unified pricing accordingly. The fare structure used in the distance-based 
unified pricing method is such that trip fares are proportional to the travel distance. The 
trip fare of i is given by

where p is the unit price. The remainder of this section first expounds on the monopoly 
and social optimum scenarios, and then presents the optimization algorithm for finding 
out the monopoly optimum (MO) and the social optimum (SO) for the two scenarios. A 
utility-based compensation pricing method is then proposed in the next section and will 
be applied to enhance the equity among individuals in the MO and SO operation scenarios 
separately.

Monopoly scenario

The ridesplitting service is operated with for-hire drivers and vehicles, which differs it 
from ridesharing. A ridesplitting monopolist attempts to maximize its profit by optimizing 
the vehicle fleet size and trip fare. Profit is the difference between revenue and operating 
cost. The problem can then be formulated as

where � is the operating cost of a vehicle in one hour. The first-order optimality conditions 
of this problem are:

(20)ri = pdi

(21)(P1) maximize �(N, p) =
∑

i DiPiri − �N

(22)
��

�p
=
∑

i

(
Di

�Pi

�p
ri + Qidi

)
= 0

(23)
��

�N
=
∑

i

Di

�Pi

�N
ri − � = 0
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After some straightforward work we arrive at:

Due to the sophisticated interdependence among system endogenous variables (e.g., wait-
ing time, detour time, ridesplitting demand), the first-order conditions of P1 cannot be 
solved analytically. Thus, the algorithm presented later in Sect.4.3 will be used. One may 
note that the derivatives of profit are functions of the derivatives of detour time and wait-
ing time. For ease of reading, the method for calculating the derivatives of detour time and 
waiting time with respect to p and N is omitted here and can be found in Appendix B.

Social optimum scenario

Social welfare also known as social surplus, equals the sum of consumers’ and produc-
ers’ surplus (Cairns and Liston-Heyes 1996). Mathematically, the social welfare maxi-
mization problem can be constructed as

where Fi(⋅) is the inverse of the demand function given in Equation (9). From Equation (9), 
we can easily get

Note that the consumers’ surplus must be carefully determined due to the inclusion of wait-
ing time and detour time in the demand curve. The integral in P2 is obtained by integrating 
under a hypothetical demand curve in which the service level (waiting time, detour time) 
is held fixed while the trip fare varies, rather than under the real market demand curve 
(Anderson and Bonsor 1974; Cairns and Liston-Heyes 1996).

After some straightforward work we can write the first-order conditions of P2 as

Similarly, the first-order conditions of P2 cannot be solved analytically. We can see that 
the derivatives of welfare are also functions of derivatives of detour time and waiting time 
(Appendix B).

(24)
��

�p
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(26)(P2) maximize S(N, p) =
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i ∫
Qi

0
Fi(x)dx − �N

(27)Fi(x) = ri =
1
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[
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Gradient descent algorithm for optimizing operation strategies

Due to the difficulty in tackling the first-order optimality conditions of P1 and P2, we 
will apply the Gradient Descent (GD) algorithm to approximate the optimal solutions 
for the problems. Keller (2013) proved that under certain conditions, the local maxi-
mum of the non-convex problem P1 in terms of the prices is also a global maximum. 
Moreover, the numerical experiments conducted in the existing literature on taxi mar-
kets (Yang et  al. 2002) and ridepooling markets (Ke et  al. 2020a) also found that, in 
rational ranges of regulated decisions, the local optimums of problems P1 and P2 in 
terms of price and vehicle fleet size are also the global optimums. It means that though 
gradient-based algorithms only ensure convergence to the local minimum, they can be 
applied to solve problems P1 and P2. The experiment results in this study show that the 
proposed algorithm can solve the two problems effectively, and the network equilibrium 
for each combination of decision values is unique in general.

Define the operation strategy as O ≜ (N, p) . Let J(O) denote the objective function, 
which can be either �(O) or S(O). Then the GD for solving the relevant optimization 
problems can be described as Algorithm 1.
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Utility‑based compensation pricing

Though ridesplitting offers a promising increase in LoS compared to public transit and 
taxi services (Ma et  al. 2019), the variance in waiting time and detour time due to the 
dynamically matching and routing can easily render the inequity of LoS among riders at 
platforms adopting simple unified pricing methods. Kleiner et  al. (2011) and Wang and 
Yang (2019) pointed out that the variance in the potential detour distances plays a nega-
tive role in the popularity of ride-shares. As a result, more efforts are needed to innovate 
appropriate methods to enhance the LoS equity in ridesplitting services. Considering the 
tight connection between LoS and the perception of the utility, we propose a utility-based 
compensation pricing method in this section, giving the first shot on the problem.

Due to the discrepancy of ODs and the uncertainty involved in ridesplitting services, 
passengers always pay different monetary and time costs for trips. This causes inequity 
among passengers, represented by the variance of LoS. In Wang et al. (2018), the quality 
of matching in ridesplitting services is typically defined as the sum of the utilities of all 
individuals in the system. de Ruijter et al. (2020) and Ma et al. (2019) also suggested that 
trip fare and travel time are essential indicators of LoS of shared ride services. Inspired by 
the literature, we introduce the following assumption to quantify the LoS of ridesplitting 
services.

Assumption 3 The level of service of a ridesplitting trip can be represented by the cor-
responding utility.

Notice that the utility function applied in this study is a linear combination of trip fare, 
waiting time, and travel time, which captures the main factors affecting passengers’ percep-
tion; thus, it is plausible to hypothesize the utility is somehow tantamount to LoS. Then, 
the proposed utility-based compensation pricing method is to improve the equity among 
passengers by reducing the variance of trips’ utilities calculated on the basis of the ini-
tial fee (unified pricing), travel time, and waiting time. In particular, by this compensation 
approach, trips with an initial utility less than a predefined utility threshold will be com-
pensated based on a platform-determined function. Apart from equity, it is also expected to 
promote the LoS to some extent.

The remainder of this section first elucidates the compensation principle adopted and 
then presents the method to approximate the new equilibrium state after applying compen-
sation pricing.

Compensation principle

To define the compensation principle, we need to specify the utility threshold value (termed 
as the compensation reference point, CRP) and the method to calculate the amount of com-
pensation (termed as compensation function). Trips below CRP will be compensated with 
an amount of money determined by the compensation function. Moreover, in order to con-
nect CRP with observed utilities of trips and thus guarantee the compatibility and viability 
of the compensation method in markets with different characteristics, we define CRP as a 
proportion of the mean of trips utilities, which can be written as

(30)a = 𝛼V̄
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where � is named as the compensation reference factor (CRF). Intrinsically, the compensa-
tion approach influences LoS and equity from two directions: (i) For the trips whose initial 
utility is less than 𝛼V̄  , their utilities will increase attributed to the compensation; (ii) For 
the trips whose utility is greater than 𝛼V̄  , however, their utilities will reduce due to the 
increasing of waiting time and detour time contributed by the induced demand. As a con-
sequence, it is probable to observe the improvement of equity. Besides, the improvement of 
LoS in the following experiments demonstrates that the former effect is stronger than the 
latter.

In the unified pricing method, system endogenous variables under certain operation 
strategy (N, p) can be computed directly through the ME model. Trips are considered at the 
network level, and variables are aggregated based on ODs. Differently, the compensation 
method developed in this section is individual-based. The results in Chen et al. (2017), Li 
et al. (2019b), Zheng et al. (2019) and Chen et al. (2021) showed that the travel distance, 
travel time and waiting time follow log-normal distribution. On the other hand, we also can 
estimate well-fitted log-normal distributions for the direct trip time and trip distance from 
the simulation data that will be used in our case studies, as shown in Fig. 5. In Fig. 5, � is 
the shift from zero, and � and � are the mean and standard deviation of the variable’s natu-
ral logarithm, such that ln(X + �) ∼ N(�, �) where variable X is direct trip time or travel 
distance. Since travel time is the sum of direct trip time and detour time, detour time also 
follows a log-normal distribution. Thus, we make the following assumptions for the related 
variables to ease processing.

Assumption 4 Attribute x (i.e., w, d, t̃ and td ) of trips from io to id follows a log-nor-
mal distribution with �x , �x and �x as the shift from zero, mean and standard deviation, 
respectively.

The parameters of direct trip time distribution and trip distance distribution can be 
directly estimated from the simulation data of the respective ODs. We assume there is no 
shift from zero for the waiting time and detour time distributions. Note, for a variable X fol-
lowing log-normal distribution (no shift), its expected value and variance can be estimated 
by

(31)E(X) = e
�+

1

�

(b)(a)

Fig. 5  Distribution of simulated direct trip time and travel distance
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from which we can get

The means of waiting time and detour time are known. After assuming the standard devia-
tions based on the means empirically, we can obtain the parameters of the log-normal dis-
tribution generators with the above estimators. The attributes of individual trips can then 
be generated from the fitted distributions.

With Assumption 4, we can calculate the utility of each individual trip by

where k is the index of the trip, and ti,k = t̃i,k + td
i,k

 . After compensation, the trip fare is 
given by

where ci,k is the amount of compensation, ra
i,k

 is the trip fare after compensation. Recall that 
the utility of a trip after compensation must satisfy a predefined function termed as com-
pensated utility function, which describes the relationship between the utility before and 
after compensation. The difference between the initial utility and the utility resulted from 
the compensated utility function determines the amount of compensation. Specifically, the 
compensation is given by

where Vi,k is the utility before compensation, Va
i,k

 is the target utility, and f a(Vi,k) is the com-
pensated utility function for calculating the target utility, which is a function of Vi,k . Rigor-
ously, We define the compensated utility function f a(Vi,k) as follow.

Definition 5.1 A compensated utility function is a function that describes the relationship 
between the utilities of trips before and after compensation. The compensated utility func-
tion should hold the following properties. 

(1) The utility after compensation should not be larger than the compensation reference 
point, i.e., Va

i,k
≤ a,∀i, k.

(2) The order of trips sorted by utility should not change after compensation, i.e., if 
Vi1,k1

≤ Vi2,k2
 , then Va

i1,k1
≤ Va

i2,k2
,∀i1, i2, k1, k2.

(3) Trips with a utility farther below the compensation reference point should get more com-
pensation than those closer, i.e., if Vi1,k1

≤ Vi2,k2
≤ a , then ci1,k1 ≥ ci2,k2 ≥ 0,∀i1, i2, k1, k2

.

(32)Var(X) = e2�+2�
2

− e2�+�
2

(33)� =
1

2

[
4log(E(X)) − log

(
Var(X) + E2(X)

)]

(34)�2 = log
(
Var(X) + E2(X)

)
− 2log(E(X))

(35)Vi,k = �tti,k + �wwi,k + �rri,k

(36)ra
i,k

= pdi,k + ci,k

(37)ci,k(Vi,k) =
Va
i,k
− Vi,k

�r

(38)Va
i,k

= f a(Vi,k)
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Market equilibrium

Due to the changes in the LoS of ridesplitting services, a new balance will present. For 
the purpose of comparative analysis, we need to estimate the market equilibrium for 
the case under the proposed compensation pricing method. To this end, trips need to 
be re-aggregated according to the ODs to estimate the new equilibrium. The new OD-
based trip fare is given by

The equilibrium under compensation pricing will then be explained by the equations sys-
tem provided in Equation (19) after plugging the new trip fare. It is worth pointing out that, 
in practice, the CRP for a market is decided based on the historical operation data.

Numerical experiments

In this section, we introduce the study area, data, and parameters used for the experiments 
first. Next, we evaluate the performance of the proposed ridesplitting market on the oper-
ational objectives described in Sect.4, i.e., profit maximization and social welfare maxi-
mization, and evaluate the influence of decision variables on the system variables and 
objectives. We then analyze the difference in the market under the proposed utility-based 
compensation pricing method and further explore its impact and effectiveness on the LoS 
and service equity.

(39)ři =
1

Di

∑

k

ra
i,k

Table 1  Estimation of preference 
coefficients

Coefficient Value Standard error t-test p-value

�r (/Euro) −0.589 0.0509 −11.6 0
�t (/min) −0.128 0.0139 −9.18 0
�w (/min) −0.113 0.0134 −8.46 0

Fig. 6  Network of the Munich 
city
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Experiment setups

Tsiamasiotis et  al. (2021) designed and performed a web-based stated-preference survey 
to identify factors affecting the travel behavior of passengers due to the introduction of 
dynamic vanpooling services. 27 hypothetical scenarios were created and divided into 
three blocks. In each scenario, three alternatives were provided, including private car, pub-
lic transport, and dynamic vanpooling. Respondents were asked to state their preference 
in a five-point rating scale given the values of in-vehicle travel time, monetary cost, and 
waiting time (including walking time), which conforms to the requirement of the model 
proposed in this study. We utilize the ordered logit model (Train 2009) to estimate the pref-
erence coefficients based on this survey. Table 1 lists the estimation result. It can be seen 
that the p-values for the estimates are approximated to zero, which indicates the estimation 
result is significant with a confidence level of 99%.

The layout of the Munich area used in the following experiments is shown in Fig. 6. 
This area (about 900 km2 ) is divided into 20 zones resulting in 20 × 19 = 380 possible OD 
pairs (internal trips of each zone are ignored). The road traffic demand data partially cali-
brated with traffic counts collected on May 9th, 2017 (Tuesday) are used. Note, since both 
public transport and private transport are considered, we need to scale up the road traffic 
demand (private transport) based on the modal split of the Munich network. In order to 
mitigate the randomness of the ridesplitting market, we only consider the OD pairs whose 
travel demand is greater than 100 rather than all OD pairs within the network. This restricts 
the services to 45 ODs with 7,726 trips in total (we focus on an off-peak period between 5 
a.m. to 6 a.m.). The direct trip time and distance of each OD pair are estimated by averag-
ing all trips of the same OD generated by Simulation of Urban MObility (SUMO) (Lopez 
et al. 2018). To eliminate the stochasticity in simulations, results from 10 replications are 
averaged. All simulations are implemented at the mesoscopic level through the non-itera-
tive dynamic stochastic user route choice assignment (i.e., automated routing in SUMO).

We assume the attributes of public transport and private vehicles are given as in Table 2. 
It is worth noting that the walking time to the station of public transport and the search-
ing time for parking of private car is counted as a part of the waiting time. The determi-
nation of attribute values in Table  2 partially refers to Tsiamasiotis et  al. (2021), while 
the attributes of ridesplitting services are inherently decided by the ME model. Moreover, 
we assume the operating cost per vehicle per hour � = 15 Euro/h. Other prices imposed 
externally, such as congestion pricing (de Palma and Lindsey 2011; Do Chung et al. 2012; 
Wang et al. 2014; Laval et al. 2015; Cheng et al. 2017) and road pricing (Cramton et al. 
2018), are not considered in this study and are left for future work.

In order to calculate the market model parameters (A and B), we assume the average 
detour time and average waiting time of the ridesplitting services in Munich is 30% of the 
average direct trip time and 4 minutes, respectively, when the vehicle fleet size N̂ = 400 
and the unit price p̂ = 1.00 Euro/km. The average trip fare then is r̂ = p̂d̄ . Such a market 
leads to A = 120.546,B = 0.026 by using the method present in Appendix A, which will 

Table 2  Attributes of public 
transport and private vehicles 
(source: based on Tsiamasiotis 
et al. (2021))

Mode Waiting time 
(min)

Travel time 
(min)

Trip fare (Euro)

Public transport 12 2td
i

0.3di + 1.5

Private car 5 td
i

0.5di + 3
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be applied in all hereafter experiments. In practice, one can calibrate the parameters with 
operation data to characterize the market of interest. Let � = �c = �d = � = 1 in the waiting 
time model.

When generating the individual trips for calculating the compensations, the standard 
deviations of waiting time and detour time are set to be one-third of the means. We apply 
the following compensated utility function to calculate the utility after compensation in 
this study. For ease of reading, its derivation is omitted here and can be found in Appendix 
C.

Fig. 7  Profit and welfare in a 
two-dimensional space of vehicle 
fleet size and unit price

(a) (b)

(c) (d)

Fig. 8  Endogenous variables in a two-dimensional space of vehicle fleet size and unit price
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As a result, the compensation function is given by

Operations under distance‑based unified pricing

This section shows the operation performance of ridesplitting services under the distance-
based unified pricing method. The operational objectives and endogenous variables are 
plotted as contour maps in a two-dimensional space formed by the decisions in Fig. 7 and 
Fig. 8, respectively. Meanwhile, the monopoly optimum (MO) and social optimum (SO) 
found by the GD algorithm are also marked in the figure.

Fig. 7 shows the iso-profit contours and iso-welfare contours in a two-dimensional space 
with vehicle fleet size on the x-axis and unit price on the y-axis. As pointed out by Yang 
and Wong (1998), in particular, if the fleet size is too small, a steady-state equilibrium 
solution may not exist for a network-based equilibrium model. Accordingly, we can also 
observe an empty region in the lower left of the figure for the ridesplitting market. Fur-
ther, it can be seen that the optimal unit price for a monopoly is higher than the optimal 
unit price at SO, while the MO fleet size is greater than the SO fleet size. Let ( N∗

mo
, p∗

mo
 ) 

and ( N∗
so
, p∗

so
 ) denote the coordinates of MO and SO, respectively. Then, p∗

mo
> p∗

so
 and 

N∗
mo

< N∗
so

 . This is in accord with our daily understanding. To benefit the public, the ser-
vices should be operated more widely and cheaply. According to Fig.  7, generally, both 
profit and welfare first increase with the unit price and fleet size and then decrease. Note 
that when the unit price is relatively high, the joint influence of decision variables on profit 
and welfare are similar. When the unit price is relatively small, however, the movements 
of the two contours become significantly different. It implies that the design of operation 
strategies should be dedicated specifically to a market with particular consideration of its 
characteristics and objectives. Moreover, the shape of the contours also verifies the finding 
that, in the reasonable ranges of decision variables, the local optimum of P1 or P2 is also 
the global optimum. Thus, it is appropriate to apply the GD algorithm to solve them.

Fig. 8a-Fig. 8d depict the contours of ridesplitting demand, seats occupancy rate, net-
work average detour time and network average waiting time, respectively. Let 𝜆, ̄̃ti and w̄i 
denote the seats occupancy rate, network average detour time and network average waiting 
time, then we have

Noteworthy, � reflects the profitability of the ridesplitting service market at a regulated 
price (Yang and Wong 1998). Fig.  8b shows that � decreases with both unit price and 
vehicle fleet size. Decreasing with the unit price is because a higher price will reduce the 
passenger demand due to the negative price elasticity. Decreasing with the fleet size is 
because, despite more vehicles can attract more passengers due to less detour time and 
waiting time, the induced demand cannot meet the increment of seats supply. Meanwhile, 

(40)Va =

�
V if V > a

−
√
2aV − a2 otherwise

(41)ci,k =

{
0 if Vi,k > a

1

𝛽r

(
−
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otherwise
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we can see that MO occupancy and SO occupancy are 0.25 and 0.20 (excluding the driver), 
respectively, resulting in a vehicle occupancy rate of 2.5 persons and 2.2 persons (includ-
ing the driver), which are more superior compared to the German average of 1.5 persons 
(van Dender et al. 2013).

Further, it can be seen from Fig. 8c and Fig. 8d that the network average detour time is 
mainly dependent on the vehicle fleet size. In contrast, the network average waiting time is 
mainly affected by the unit price. This phenomenon conforms to the assumptions and their 
formulations. If we assume the direct trip time is the same for all OD pairs (denoted as td ), 
then Equation (12) becomes t̃i = Atd∕N . As a result, ̄̃t = Atd∕N such that ̄̃t ∝ 1∕N . It indi-
cates that fleet size is the dominant of network average detour time. However, we can also 
observe that price influence is strengthened when the fleet size becomes larger. The possi-
ble reason may be the complicated network structure enhances the heterogeneity of the 
direct trip time such that ridesplitting demand plays a more important role in determining 
the detour time. In contrast, as shown in Fig. 8a, ridesplitting demand is primarily domi-
nated by the unit price. In terms of the network average waiting time, we have 
wi ∝ Q�

i
∕
�

Nns −
∑

j Qjtj . The influence of N is weakened by the square root operator. 
Thus it mainly depends on the ridesplitting demand and thus unit price. This relationship 
would not change after averaging.

Recall that in market assumptions, the unit price is 1.00 Euro/km, the fleet size is 400, 
and the average waiting time is 4 minutes. However, at MO, for instance, the unit price 
becomes 0.53 Euro/km, and the waiting time increases to 15 minutes with 356 vehicles. It 
implies that passengers can bear a longer waiting time to enjoy a cheaper service. We want 
to mention that the aforementioned system performance measures depend on the market 
assumptions (A and B), the experiment market/network, and the preference coefficients in 
the utility function.

Benefits of the utility‑based compensation pricing

To improve the equity and expected LoS, we proposed a utility-based compensation pricing 
method for ridesplitting services. LoS and equity are represented by the mean and standard 
deviation of trips utilities, respectively. In this section, the evaluation of market performance 

(a) (b)

Fig. 9  Performance of the utility-based compensation pricing method under different CRFs based on the 
MO operation strategy
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under different CRFs ( � ) is conducted on the basis of the MO (i.e., N∗
mo

= 356, p∗
mo

= 0.53 ) 
operation strategy and the SO operation strategy (i.e., N∗

so
= 623, p∗

so
= 0.36 ) separately.

Fig. 9a depicts the profit, social welfare, and mean of utilities under different CRFs on 
the basis of the MO solution with CRF on the x-axis, profit/welfare on the left y-axis, and 
mean utility on the right y-axis. Clearly, profit and welfare increase with CRF and end up 
with the respective basic values, where basic values are the values at the equilibrium of the 
MO solution for the unified pricing scenario. It can be seen that the peaks of the surplus 
and profit curves are higher than the basic ones. It implies that the proposed compensation 
pricing approach can benefit both profit and welfare if disregarding the seek of improv-
ing LoS and equity. The maximum profit and maximum welfare increase by 2.9% (from 
6,378 Euro to 6,560 Euro) and 6.5% (from 11,630 Euro to 12,388 Euro), respectively. 
Denote the x coordinate of the first meeting point between the basic profit (dashed blue) 
and the profit curve (solid blue) as �∗

p
 . Similarly, denote the x coordinate of the first meet-

ing point between the basic surplus and the surplus curve as �∗
s
 . Then, we have 𝛼∗

s
< 𝛼∗

p
 . 

Since the curve of mean utility is monotonically decreasing, so 𝛥Vs > 𝛥Vp , where �Vs and 
�Vp denote the improvement of LoS under �∗

s
 and �∗

p
 , respectively. Likewise, compensa-

tion under �∗
s
 can also improve service equity (utility variance) more than under �∗

p
 , i.e., 

𝛥𝜎s > 𝛥𝜎p , as shown in Fig. 9b.
Further, as indicated in Fig.  9b, implementing compensation under �∗

s
 will lead to a 

reduction of profit by ��s . This provides a reference to the relevant department regard-
ing the development of the subsidy policy. To maximize the LoS and equity of ridesplit-
ting services without sacrificing any profit and social welfare, the service operator imple-
menting the compensation pricing approach should be subsidized with an amount of at 
least ��s (the analysis regarding subsidy is detailed in Sect. 7.2). Suppose no subsidies are 

Table 3  The performance of 
compensation pricing on the 
system endogenous under MO

CRF Ridesplitting 
demand

Seats occu-
pancy rate

Waiting time Detour time

�∗
p

10.3% 14.5% 15.0% 6.1%
�∗
s

33.6% 41.0% 48.5% 9.0%

(b)(a)

Fig. 10  Performance of the utility-based compensation pricing method under different CRFs based on the 
SO operation strategy
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possible under �∗
p
 . In that case, one can not only improve the LoS and equity (though the 

improvement is shrunken compared to the case under �s ) but also contribute to additional 
welfare of �Sp (5.9%, from 11,630 Euro to 12,320 Euro). One can even see an increase in 
both profit and welfare in the range between �p and the second meeting point between the 
basic profit and the profit curve. It is worth noting that the benefit to LoS and equity would 
be impaired with the increase of � . Table 3 provides the influence on the system endog-
enous variables when applying compensation pricing under the two mentioned meeting 
CRF points.

Fig. 10 illustrates the performance of the proposed compensation approach in the SO 
operation scenario. It is worth noting that the first meeting point between the basic profit 
and the profit curve does not exist. That is, a subsidy is necessary for the operator to 
implement the compensation method in this case. Otherwise, it will produce a profit loss 
compared to the unified pricing case. Likewise, there is also nearly no increase in the 
maximum welfare (only increase about 0.6%). Moreover, the improvement of LoS and 
equity under �∗

s
 is diminished compared to that in the case of MO. Therefore, we state 

that the proposed compensation pricing method is more beneficial for a market aiming 
at maximizing profit. However, to a certain extent, this also implies the inefficiency of a 
monopoly market.

Fig. 11  Flow chart for integrating market equilibrium with DTA simulation
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Discussion

Market equilibrium

Model parameters

The model parameters A and B are critical in establishing a reliable ME model for ride-
splitting market analysis. Note that A and B are the exogenous parameters of the expected 
detour time and waiting time estimation models. We apply the method described in Appen-
dix A with some approximations to calculate them for a synthesized market. It is worth 
mentioning that an appropriate calibration procedure for A and B using the real data of 
experienced waiting and detour times is required (part of ongoing research). Besides, other 
possibilities of calibrating these parameters with a traffic simulation model are also pre-
sented in Fig. 11 (for cases of absence of operational data).

Fleet deployment

In the ME model, we assume the expected detour time among different OD pairs to be pro-
portional to the direct trip time of the corresponding OD. However, the situation is more 
complicated in practice (for example, it should also relate to how the passenger demand is 
distributed over the network) and requires further investigation through either empirical 
experiment or analytical derivation. Also, the expected waiting time model only accounts 
for the spatial difference of vehicle allocations and the potential effect of demand on sup-
ply attraction. A more well-designed model is required to fit the spatial difference and the 
temporal elasticity of the ridesplitting supply and demand. Further, as discussed in Fagnant 
and Kockelman (2018), fleet operations are also a vital factor to the system profitability 
and with significant consequences on customer experience. The ME model demonstrates 
that the fleet deployment strategy should also somehow affect the distribution of ridesplit-
ting demand in the long-term operation by influencing the detour and waiting times. Thus, 
this is rather a complex topic that requires more effort to parse.

Apart from the further analytical modeling improvements in the ME model, another 
reliable solution to better explore an optimal deployment strategy is integrating the pro-
posed modeling framework into a traffic simulation platform for experimental implemen-
tation. Modeling the ridesplitting market with a dynamic traffic simulator provides the 
opportunity to model individual vehicles with opportunities to implement fleet deployment 
strategies and have realistic service attributes of waiting and detour times at the expense of 
higher computational effort.

Simulation integration

The ME model approximates the service attributes or more indirectly performs the mode 
choice of ridesplitting services analytically. However, the mode choice step in a ridesplit-
ting simulation platform is somewhat computationally expensive, requiring equilibrium/
convergence to get a specific set of service attributes for any change in exogenous vari-
ables (Liu et al. 2019). Integrating a ME model in a ridesplitting simulation platform can 
help remove the required computational effort for mode choice. In return, the ME model 
approximation can also be further improved by a feedback calibration loop of its model 
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parameters, based on the experienced service attributes from the simulation (Fig. 11), as 
suggested in section Sect. 7.1.

Subsidy schemes based on utility‑based compensation pricing

Subsidy schemes

Agatz et al. (2012) suggested that, in order to improve the density of ridesplitting riders, 
local governments need to subsidize ridesplitting initiatives. Utility-based compensa-
tion pricing methods provide opportunities to improve the effectiveness of such subsidy 
schemes. Ridesplitting services, by their nature, cannot promise equity in perceived trip 
LoS among different passengers and may have negative impacts due to uncertainty (Guan 
et  al. 2019). Subsidies provided through utility-based compensation pricing can help 
improve equity and average utilities significantly (as shown in Fig. 9 & Fig. 10). In addi-
tion, the improvement in average utilities also attracts more passenger demand contrib-
uting to a higher mode share of the service. Fig.  12 depicts the relation between profit, 
compensation, and attracted demand for two different situations: (1) the start-up phase of 
operation, when both operator and government aim to promote the ridesplitting services 
(assuming 40% people are exposed to the service); (2) the mature phase of operation when 
the operator wants to maintain operation afloat and the government intends to promote the 
service.

Supply and demand management

In our model, the fleet size is a decision variable. Yet, one can integrate the model with a 
wage-based (including incentives) supply model to mimic the mechanism that the fleet size 
is dependent on the wages the operator offers. In this case, the labor supply elasticity has 
to be carefully determined given the contradictory results reported in the literature. Spe-
cifically, some found a negative labor supply elasticity by adopting the “income targeting” 

(a) (b)

Fig. 12  Comparing compensation, profit and attracted demand in MO operation strategy
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theory, such as Camerer et al. (1997), while some obtained a positive one as per the theory 
of intertemporal substitution, such as Chen and Sheldon (2016) and Sun et al. (2019). We 
refer the reader to the Table 1 in Sun et al. (2019) for a review of related analyses on this 
topic.

Ridesplitting services require critical mass/density of passengers for sustainable opera-
tions (Furuhata et al. 2013). From Fig. 12, we can see that, at both the start-up stage and the 
mature stage, the operator can perform demand management efficiently under the proposed 
pricing method by implementing different compensation strategies. On the other hand, 
the government can also manage both the ridesplitting demand and road travel demand 
by adjusting the subsidy scheme. For example, if the government subsidizes an amount 
of � to the service operator (assuming the subsidies are invested into compensations), the 
ridesplitting demand will increase by �Q . On the contrary, private vehicles on the road and 
the demand for public transport will decrease correspondingly. As such, apart from capi-
tally investing in the construction and expansion of the road network or public transport, 
subsidizing ridesplitting services could provide a relatively inexpensive way to enhance the 
efficiency of urban transportation systems (Agatz et al. 2012).

Dynamic pricing

Obviously, both the distance-based unified pricing and the utility-based compensation pric-
ing introduced in this paper are not dynamic (i.e., the compensations are estimated peri-
odically for the trips finished within the interval) due to ME-based modeling. A realistic 
implementation of such pricing (e.g., in a DTA simulation) would require dynamic com-
pensation (i.e., a passenger fare is compensated upon trip termination). Dynamic com-
pensation pricing can be done, setting � as a dynamic compensation control variable, and 
profit, attracted demand and average LoS as control updating variables. Recall that the 
prices imposed externally (such as congestion pricing and road pricing) are not considered 
in this paper and can have impacts when the trip fare is determined dynamically because 
these external prices are always only valid for a specific part of the network (e.g., city 
center) within a specific time period in a day. Consequently, it is appropriate to consider 
them when extending the pricing method to be dynamic.

Conclusions

This paper focuses on the inequity problem existing among individual trips in the ridesplit-
ting markets. We construct a network-based market equilibrium model to estimate the mar-
ket responses to the operator’s decision on trip fare and vehicle fleet size. In this model, the 
complicated relationships between the decisions and system endogenous variables (e.g., 
ridesplitting demand, waiting time, detour time) in ridesplitting markets are synthesized 
into a simultaneous equations system. A Gradient Descent algorithm is applied to find the 
monopoly optimum and social optimum under the distance-based unified pricing method. 
The result shows that the MO unit price is higher than the SO unit price, while the MO 
fleet size is smaller than the SO fleet size. We also show that network average detour time 
and network average waiting time are mainly influenced by the vehicle fleet size and the 
unit price, respectively, while the seats occupancy rate is dependent on both of them. In 
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addition, limitations, possible extensions, and applications of market equilibrium, i.e., its 
calibration, usage for service mode choice, and integration in the DTA simulation platform, 
are also explored.

A utility-based compensation pricing method is developed to improve equity and aver-
age LoS on the basis of the unified pricing method. With this method, trips with a utility 
below a threshold (i.e., CRP) are compensated based on a predefined compensated utility 
function (describing the relationship between the utility before and after compensation). 
Note, LoS and equity of services are represented by the mean of and variance of trips’ 
utilities, respectively. The result shows that the improvement of LoS and equity is more 
pronounced when the compensation approach is utilized after the MO solution compared 
with when it is after the SO solution. In the former case, we can even see an increase in the 
maximum profit and welfare by applying this compensation method with a specific range 
of CRFs. Further, its implementation in different domains, i.e., for more effective subsidy 
schemes and dynamic pricing, is also discussed.

A Calibration of model parameters

The estimation accuracy of expected detour time and expected waiting time can signifi-
cantly affect the effectiveness of the proposed ridesplitting equilibrium model. Therefore, 
it is critical to provide plausible A and B in the detour and waiting time models. Remark-
ably, A and B would be different for different markets. Concisely, A and B can capture the 
particular traits of the market and thus lead to a reliable market model for relevant analyses.

In this section, we introduce an approximating method to calculate A and B for a market 
given the operation data. Suppose that we know the vehicle fleet size N̂ , average trip fare r̂ , 
average detour time ̂̃t , and average waiting time ŵ from the operation of the market of inter-
est. Assume the probabilities of choosing ridesplitting are the same for all OD pairs in the 
network, according to the MNL model, we can simply get

where V̂rs = 𝛽t(t̄
d + ̂̃t) + 𝛽wŵ + 𝛽rr̂ . And �̂� =

∑
j∈{�−rs} e

V̂j is the sum of the exponential of 
utilities of other transportation options.

Recall that the expected waiting time of OD i is estimated by

Assume the network is homogeneous: (i) the expected waiting time is the same 
across the network ( wi = ŵ ), (ii) the ridesplitting demand is the same for all OD pairs 
( Qi = Q̂i,𝛺i = 1 ), and (iii) the expected detour time is the same across the network ( ̃ti = ̂̃t ). 
Then, Qi = P̂

∑
i Di∕nz and 

∑
j Qjtj = P̂

∑
j Dj(

̂̃t + td
j
) , resulting in

(43)P̂ =
eV̂rs

�̂� + eV̂rs

(44)wi =
BiQ

�
i

�i

�
Nns −

∑
j Qjtj

(45)B =
ŵ

�
N̂ns − P̂

∑
j Dj(

̂̃t + td
j
)

(P̂
∑

i Di∕nz)
𝜃
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On the other hand, recall that the detour time model is given by

Similarly, we approximate td
j
≈ t̄d,

∑
j Qjt

d
j
≈ P̂

∑
j Djt

d
j
,
∑

j Qj ≈ P̂
∑

j Dj , then we can get,

Equation (45) and Equation (47) provide a reliable approximated value of B and A, respec-
tively. Note that sometimes we may still need to tune the result from this calculation pro-
cedure to make the model with the same input conditions (i.e., vehicle fleet size and price) 
result in a similar operation result.

B Partial derivatives of detour time and waiting time

As shown in Sect.4.1 and Sect.4.2, the derivatives of the objectives are determined by the 
derivatives of detour time and waiting time.

Let t′
i|p and t′

i|N denote the derivatives of ti with respect to p and N, respectively. And 
let w′

i|p and w′
i|N denote the derivatives of wi with respect to p and N, respectively. Recall 

that t̃i = Ai

∑
j Qjt

d
j
∕(N

∑
j Qj) , and since ti = td

i
+ t̃i , then t�

i|p = t̃�
i|p , thus the derivative of 

ti with respect to p can be calculated as

where

It means Equation (48) is a linear combination of t′
i|p and w′

i|p.

On the other hand, since wi = BiQ
�
i
∕(�i

�
Nns −

∑
j Qjtj) , so

where �i = nz
∑

j∈ℤi
Qj∕(

∑
k∈ℤ

∑
j∈ℤk

Qj) , and

(46)t̃i =
Atd

j

∑
j Qjt

d
j

t̄dN
∑

j Qj

(47)A =

̂̃tN̂
∑

j Dj

∑
j Djt

d
j

(48)t�
i�p =

Ai

N

�
1∑
j Qj

�

j

�Qj

�p
td
j
−

∑
j Qjt

d
j

(
∑

j Qj)
2

�

j

�Qj

�p

�

(49)
�Qj

�p
= DjPj(1 − Pj)(�tt

�
j|p + �ww

�
j|p + �rdj)

(50)

w�
i�N =

Bi�Q
�−1
i

�i

�
Nns −

∑
j Qjtj

�Qi

�p
−

BiQ
�
i

�2
i

�
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∑
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��i

�p

−
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�
i

2�i

�
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∑
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3
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∑
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Thus, Equation (50) is also a linear combination of t�
i|p,w

�
i|p,∀i.

Combining Equation (48) and Equation (50) in terms of different i, we can get a lin-
ear equations system with 2nz unknowns ( t�

i|p,w
�
i|p,∀i ∈ ℤ ) and 2nz equations (linear 

combinations). For a given p and N (at a specific iteration of the algorithm), this linear 
equations system is tractable via linear algebra.

Similarly, we can obtain the derivatives with respect to N as below.

where

Analogously, the linear equations system consists of Equation (52) and Equation (53) 
( ∀i ∈ ℤ ) can be solved via linear algebra.

C Derivation for the compensated utility function

By applying the utility-based compensation method, we do compensations for the trips 
whose utility is less than a predefined threshold a (a < 0) . In this study, we assume the 
form of the compensated utility function as

with following mild assumptions.

Assumption 5 f(x) is continuous and smooth on (a, a), such that: 1) f (a) = a ; 2) f �(a) = 1.

(51)
��i

�p
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nz∑
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∑
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2
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Obviously, the function in Equation (56) satisfies the properties described in Sect.5. 
Based on Assumption 5, we have

As utilities are negative, i.e., a < 0, f (a) < 0 , we then know l < 0 from Equation (57). 
After some straightforward work, we arrive at

Consequently, let Va denote the utility after compensation, then the full formulation of the 
compensated utility function is given by
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