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Introduction Simulation-based synthetic supply disruptions Resilience evaluation under supply disruptions

. Transportation system disruption: system not operates with (1) p € |0,1): the percentage of links that are blocked due to the disruptive event = Robustness: Kyoto > Munich

optimal efficiency (2) With ? random seed r, a disruption scenario S is created by randomly = Redundancy: Kyoto > Munich
- Topological indicators, representing the structural properties of Samplmg the Im.ks to be closed + Resourcefulness: No quantitative indicator

. ’ . (3) Topological attributes x of the damaged network G(S) - Rapidity: Kyoto < Munich

the network, fail to capture traffic dynamics (4) Run multiple SUMO simulations (S) with G(S) and demand matrix M to - Traffic resilience: Kyoto > Munich
- Indicators based on direct trip information are sensitive to generate traffic dynamics Y (S)

travel demand levels and patterns (5) Estimate the traffic resilience loss R*(S) = 5 o0
- MFD is an intrinsic property of a homogeneously congested foz ______ 238 IR & N I foz ______ 00 P SR
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Figure 2. Graphical illustration of generating scenarios for regression analysis. " -10 5 5 e " -10 —
- Discuss and compare the traffic resilience to congestion and Time step (5 min) Time step (5 min)
(a) Munich: Supply-side disruptions (b) Kyoto: Supply-side disruptions

supply-side disruptions Case studies
- Case studies on two real networks to evaluate the extent to

which topological indicators can explain traffic resilience

Figure 5. Traffic resilience under supply disruptions (large demand scenario).

Munich, Germany: central ring network, 10 km x 10 km, 2605 links

Kyoto, Japan: grid network. 6 km x 8 km. 1189 links Relationship between topology and resilience

Proposed indicators: traffic dynamics + network characteristics

Traffic resilience to disruptions
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- To supply dISFUptIOI’lS: A “shrlnkage” of the MED is anhupated. pums | i\] ; Figure 6. Boxplots for Beta index and traffic resilience.
(a) Munich disruption area (b) Kyoto disruption area
t* , , Variable Topology Attr. Coef. [p-value] (Kyoto) Coef. [p-value] (Munich)
RS — min {DS(t) o D(t) O} d¢ Figure 3. Study areas, networks and locations of detectors. . :
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Figure 1. Definition of traffic resilience to disruptions. signiﬁca nt attribute of traffic resilience

Figure 4. MFD dynamics of the scenarios of investigation.
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