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Abstract We propose a utility-based compensation pricing method to address the
prevalent inequity issue in ridesplitting services. A theoretic equilibrium model is
developed at the network level to interpret the intertwined relationships between the
endogenous and the decisions in ridesplitting markets. In this paper, the operation
property of the market under a common distance-based unified pricing method is
described by the response of system performance measures to the decisions in the
numerical experiments. Moreover, a gradient descent algorithm is applied to solve
the monopoly optimum and social optimum problem under unified pricing. The pro-
posed compensation method is adopted to adjust the individual trip fare determined
by the unified pricing based on a predefined compensation function. Specifically, we
investigate its effectiveness and influence in the monopoly optimum scenario and
social optimum scenario separately. The results show that it can improve the level
of services and equity among individual trips without losing any profit and welfare,
where the level of services and equity are represented by the mean and the variance
of utilities, respectively. Besides, one can even achieve an increment in maximum
profit and maximum social welfare under certain conditions. The subsidy schemes at
different operation phases of ridesplitting services are also particularly discussed.
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1 Introduction

Ridesplitting is an emerging ridesourcing service attracting much attention from in-
dustries, governments, individuals, and academics. (i) It has shown invaluable market
potential from the day it was launched, which has also been uncovered by theoret-
ical analyses and practices. Transport network companies (TNCs) thus had succes-
sively proposed respective ridesplitting programs, such as UberPool, Lyft Line, and
Didi ExpressPool (Zhu et al., 2020; Chen et al., 2021; Wang and Yang, 2019; Sha-
heen and Cohen, 2019; Wang et al., 2021). (ii) Further, its share nature provides the
possibility of alleviating the common ailments of modern cities caused by exces-
sive traffic volumes, such as traffic jams and environmental degradation (Zhu et al.,
2020; Alonso-Mora et al., 2017; Tachet et al., 2017; Abouelela et al., 2022). Com-
bining people with close itineraries to fill the vacant seats in vehicles is regarded as
the most vital method for establishing sustainable transportation systems (Sperling,
2018; Agatz et al., 2012). To unleash the potential for social benefits of ridesplitting,
governments are willing to support its development via subsidies or financial aid. (iii)
From the perspective of individuals, ridesplitting is preferred due to its superiority
in the convenience and flexibility compared to public transport and the affordabil-
ity compared to hailing a taxi or purchasing a car (Stiglic et al., 2016; Zhu et al.,
2020; Li et al., 2021a). (iv) Despite its popularity, the enormous stochasticity and un-
certainty in ridesplitting really impede its expansion. Ridesplitting requires more in-
depth investigations into operations (e.g., matching mechanism), market assessment
(e.g., service placement), and its impacts on multi-modal transportation systems (e.g.,
modal shift).

Rigorously, ridesplitting is “a form of ridesourcing where riders with similar ori-
gins and destinations are matched to the same ridesourcing driver and vehicle in
real time, and the ride and costs are split among users”. This definition was initially
presented in Shaheen et al. (2016) and was then adopted in many ridesplitting pub-
lications, such as Chen et al. (2017), Li et al. (2019b) and Zheng et al. (2019). To
clarify, we want to emphasize that riders with similar travel directions and suitable
times (i.e., feasible for all passenger departures and arrivals) can be matched to the
same ridesplitting vehicle. The matching procedure is constantly conducted for all
vehicles. A ridesplitting vehicle can be dynamically paired with an arbitrary number
of requests (fewer than the vehicle capacity) arising within its neighborhood area,
regardless of whether it is on the way to pick up a new or drop off an occupant. In
other words, ridesplitting allows dynamic matching and route change in real time to
combine requests with similar itineraries (Wang and Yang, 2019; Chen et al., 2021;
Wang et al., 2019), and vehicles with vacant seats are always in the matching pool.

Mobility providers can optimize the operational objectives by implementing ap-
propriate operating strategies with the help of the market model. While a few market
models have been designed for taxi and regular ridesourcing services, such as He
et al. (2018) and Ke et al. (2020a), no endeavors have been dedicated to ridesplit-
ting markets. The dynamics in matching and routing complicate the development of
ridesplitting market models and thus the comprehensive evaluation of the service. To
be more specific, the interdependence among system exogenous (e.g., vehicle fleet
size and trip fare) and endogenous variables (e.g., demand and detour time) becomes
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more complicated due to the uncertain waiting time and detour time caused by the
continuity/dynamics in matching and routing. Yet, a thorough understanding of the
intertwined relationships between platform decision variables and the system’s en-
dogenous variables is essential for the development of optimal operating strategies
(Ke et al., 2020a). A reliable market model is also of significant importance for ana-
lytically exploring the potential influence of the service.

Further, the competition between ridesplitting and other transport modes imposes
more requirements and restrictions on the market model. It is beneficial to construct
a market equilibrium (ME) for ridesplitting in the context of multi-modal transporta-
tion systems. The ME of ridesplitting is then dependent on the attributes of all avail-
able transport modes. Obviously, it will create more challenges in ridesplitting ME
modeling due to the modal shift from other transport modes (Zheng et al., 2019).
On the other hand, due to the spatial heterogeneity over the market (Alexander and
González, 2015), a ME model built at the network level that can reflect the OD de-
mand pattern across the network can offer more accurate insights into ridesplitting
markets (Bimpikis et al., 2019). Considering the current percentage of ridesplitting
in ridesourcing is relatively low (Tu et al., 2021; Li et al., 2019b; Zheng et al., 2019;
Li et al., 2021b), such a ME model can help transportation management agencies and
ridesourcing companies tailor the ridesplitting service to adapt to market preference
so as to improve the penetration rate (Li et al., 2019b).

Despite the improvement in the level of service (LoS) compared to public tran-
sit and taxi services (Ma et al., 2019), the deviation of waiting time and detour
time among ridesplitting passengers, together with the conventional distance-based
or time-based unified pricing methods, also leads to the inequity of the service. For
example, at a platform adopting a distance-based fare structure, the inequity exists
between two requests with identical origin and destination but different waiting and
detouring because they are charged the same. As passengers are sensitive to the ser-
vice quality (Wang and Yang, 2019), the inequity problem will discourage the modal
shift to ridesplitting services. Hence, to increase the mode share of ridesplitting and
thus gain more social benefits, it is imperative to propose appropriate methods to en-
sure LoS equity. Noteworthy, the pricing method adopted by the service provider is a
primary determinant for survivability and sustainability. Specifically, it will influence
the attractiveness and competitiveness of the service by acting on user preference,
which is mainly affected by monetary cost (trip fare) and time cost (travel time and
waiting time) (Qiu et al., 2018; Guan et al., 2019a). Coincidentally, as per de Ruijter
et al. (2020) and Ma et al. (2019), trip fare and travel time are also two important
indicators of LoS of shared ride services. Therefore, pricing methods are in demand
to compensate ridesplitting users based on the initial fee and travel time to enhance
the LoS equity of ridesplitting services.

To fill the gaps, this paper first establishes a mathematical model to describe the
sophisticated interactions between the decision variables and the system’s endoge-
nous variables in the ridesplitting markets with consideration of modal split among
multiple transportation modes. The long-term expected values of the endogenous at
the stationary equilibrium under a given operation strategy can then be estimated by
the ME model. We then derive the optimal operation strategies for profit maximiza-
tion and social welfare maximization scenarios of ridesplitting services, respectively,
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for a platform that adopts the distance-based unified pricing method. More impor-
tantly, we propose a novel utility-based compensation pricing method to mitigate the
inequity among ridesplitting trips and further enhance the LoS.

The remainder of the paper is structured as follows. In Section 2, we review ex-
isting studies on ME models and pricing methods in shared ride services. Section 3
formulates a network-based equilibrium model for ridesplitting markets. Section 4
presents the derivation of monopoly optimum and social optimum solutions under
distance-based pricing. In Section 5, we propose a utility-based compensation pricing
method with the purpose of improving the LoS and equity. In Section 6, numerical ex-
periments are conducted to evaluate the performance of the proposed market model
and the effectiveness of the compensation method in different scenarios. Section 7
discusses the limitations of the paper and some future extensions. Finally, conclu-
sions are drawn in Section 8.

2 Related Literature

This section reviews the literature in (i) transportation market equilibrium models
that can guide the formulation of ridesplitting markets and representative market sce-
narios, and (ii) pricing methods in shared ride services that can help understand the
principle and consideration behind the fare structure of these services

2.1 Transportation market equilibrium models

Cairns and Liston-Heyes (1996) developed an equilibrium model for the taxi market
to understand the competition in the industry. It found that the unregulated industry
does not satisfy the conditions of competition, and the existence of equilibrium de-
pends on the regulation of price, entry, and intensity of use of licensed taxis. Besides,
it also presented the models of monopoly, the social optimum, and the second-best in
the taxi industry. However, it did not consider the spatial difference in demand pat-
terns. An initial attempt to model the taxi market at a network level considering the
OD demand pattern was in Yang and Wong (1998). They then improved the model
in a series of works by further incorporating demand elasticity and congestion effect
(Wong et al., 2001), exploring the impacts of regulatory restraints on the equilibrium
(Yang et al., 2002). Furthermore, the improved model was also applied to investigate
the performance of nonlinear fare structures on the perceived profitability in Yang
et al. (2010). He et al. (2018) gave another shot in modeling the taxi market equi-
librium at the network level with specific consideration of both street-hailing and e-
hailing modes. The unique reservation-cancellation behavior of e-hailing customers
differentiating the two operation modes was explicitly contemplated in the market
model.

In some sense, taxi ME models can shed light on the research of equilibrium in the
shared transportation markets due to their implicit resemblance. Adopting the model-
ing framework of previous works on the taxi industry, Ke et al. (2020a) presented an
equilibrium model for ridepooling markets and elucidated the complex relationships
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between endogenous variables and decision variables (trip fare, vehicle fleet size, and
allowable detour time). It proved that the monopoly optimum, first-best, and second-
best social optimum are always in the regular regime rather than the wild goose chase
(WGC) regime1. However, it restricted the problem in the situation with at most two
passengers sharing a trip. In addition, the market was modeled at an aggregate level
without considering the network structure and OD demand patterns.

Contrary to Ke et al. (2020a), where the service provider is the service opera-
tor, Bimpikis et al. (2019) formulated the equilibrium state for a matching agency. It
pointed out that only when the demand pattern2 across the network is balanced the
benefit of applying spatial price discrimination can be observed. Leveraging the spa-
tial pricing method can promote the demand pattern balance. The result of numerical
experiments implied that the total profit and consumers’ surplus are maximized at the
equilibrium under the optimal pricing policy when the demand pattern of the network
is balanced.

Although the models developed in the works above perform well, there is still
room for improvement. First, none of them considered passenger preference in the
presence of multiple transport modes. The value of time (or willingness to pay) of
passengers is the only factor being considered in their modeling framework regard-
less of the service attributes of other transport options and the relatively constant total
travel demand within the city in the short term. This will result in an inaccurate de-
mand estimation when the service attributes are not superior to the others. Second,
no work has established a network-based equilibrium model for ridesplitting markets
that can capture the travel demand patterns and network characteristics.

2.2 Pricing methods in shared ride services

Demand estimation is the main focus of pricing strategies for shared ride services.
Some aim to capture the temporal elasticity of demand to provide optimal solutions
for a specific objective (e.g., profit maximization) (Sayarshad and Chow, 2015; Qian
and Ukkusuri, 2017). Some try to improve the reliability of the proposed solution by
considering the spatial heterogeneity of demand over the network (Chen and Kockel-
man, 2016; Guo et al., 2017; Qiu et al., 2018; Bimpikis et al., 2019). Furthermore, the
users’ heterogeneity, which is represented by passenger preference/behavioral mod-
els, is also crucial in demand modeling and has been heavily researched in the litera-
ture (Chen and Kockelman, 2016; Qiu et al., 2018; Guan et al., 2019a).

Sayarshad and Chow (2015) proposed a non-myopic pricing method for the non-
myopic dynamic dial-a-ride problem to maximize social welfare under the assump-
tion of elastic demand. It pointed out that ignoring the elasticity of demand can over-
estimate the improvement in LoS with non-myopic considerations. Inspired by the
demand elasticity among a day, Qian and Ukkusuri (2017) developed a time-of-day

1 The wild goose chase regime is an inefficient equilibrium where vehicles take substantial time to pick
up riders.

2 Demand pattern of a network is defined as a combination of a demand vector for zones and a weighted
adjacency matrix. And it is said to be balanced if, at each zone, the potential demand for rides weakly
exceeds the available drivers in the same zone after completing rides.
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pricing scheme to maximize the profit for taxi service, where different price multi-
pliers are used to alter trip cost dynamically. It suggested that a strict pricing scheme
should consider both temporal heterogeneity and spatial heterogeneity in demand,
supply and traffic conditions, together with additional consideration of users het-
erogeneity in price elasticity. The reservation cancellation behavior at e-hailing taxi
platforms could significantly influence the supply management of taxi service and
increase the total vacant taxi hours, thus hampering the development of taxi-hailing
applications. As such, He et al. (2018) presented a penalty/compensation strategy to
restrain such behaviors and further designed optimal strategies to maximize profit for
private operators and social welfare for public transportation agencies by a penalty
successive linear programming algorithm.

The Multinomial Logit (MNL) model was applied to estimate the mode share of
shared autonomous electric vehicle (SAEV) in an agent-based framework in Chen
and Kockelman (2016). It investigated the trade-offs between the revenue and mode
share of SAEV under different pricing schemes, including distance-based pricing,
origin-based pricing, destination-based pricing, and combination pricing strategy.
Guo et al. (2017) provided an elaborated demand analysis and dynamic pricing anal-
ysis of the ride-on-demand service provided by Shenzhou Ucar in Beijing, China.
They adjusted the trip price dynamically by applying appropriate pricing multipliers
for different regions based on the demand characteristics in both spatial and tempo-
ral dimensions. Integrating the passenger preference, demand distribution, and traf-
fic information of the network, Qiu et al. (2018) proposed a dynamic programming
framework to solve the profit maximization problem for a monopolistic private shared
mobility-on-demand service (SMoDS) operator. Also, the MNL model was used to
model the passenger preference and was integrated into the price optimization model
at the request level.

With the consideration of demand difference over the network, Bimpikis et al.
(2019) established an infinite-horizon, discrete-time model for ride-sharing services,
and explored the impact of the demand pattern on the platform’s prices, profits, and
the induced consumer surplus. Furthermore, considering the uncertainty of travel
time and waiting time in SMoDSs, Guan et al. (2019a) applied the Cumulative Prospect
Theory (CPT) to capture the subjective decision making of passengers under uncer-
tainty. A dynamic pricing strategy was proposed on the passenger behavioral model
based on CPT, which incorporates a dynamic routing algorithm proposed in Guan
et al. (2019b) and thus can provide a complete solution to SMoDSs.

Although the inequity among individual trips is a common phenomenon in the
ridesplitting services, it has not been investigated in the existing literature. Thus, it is
desirable to have a practical compensation method on the basis of the conventional
pricing method (e.g., distance-based unified pricing) to compensate the trips individ-
ually according to the respective perceived LoS (e.g., utilities) so as to promote the
equity of ridesplitting services.
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3 Ridesplitting market equilibrium model

This section develops a network-level ridesplitting market equilibrium model in the
context of multi-modal transportation systems. To start at C1 and then, Fig. 1 pro-
vides an operational example of a ridesplitting vehicle: the vehicle is navigated to C2
to pick up or drop off a passenger, and a new request arising in C3 is assigned to the
vehicle at the same time. The vehicle then has two possibilities: (i) follows the pre-
arranged route to C2 first and then drives to C3 immediately (directly connected) or
after accomplishing some missions (indirectly connected, e.g., after driving to C4 to
pick up or drop off another passenger), or (ii) is rerouted to pick up the request in C3
first and then drives to C2 immediately or after visiting some places (e.g., C4 for an-
other pick up or drop off, as the mission order may be altered due to the route change).
This simple example demonstrates the extreme dynamics of ridesplitting services. We
want to emphasize that the picking up status specified for ridepooling vehicles does
not exist in this ridesplitting case, as vehicles are always in the matching pool even
when they are on the way to pick up passengers. As a result, the pick-up time will
be accounted for as a part of passenger waiting time in the ridesplitting market and
will not be specifically modeled. Further, due to the presence of other transportation
options, passengers who are not matched to ridesplitting vehicles will be naturally
counted in the demand for other transport modes. In other words, the probability of
using ridesplitting is somewhat representing matching probability, which is consis-
tent with the assumption adopted in Alexander and González (2015). The matching
probability in ridesplitting is thus not defined in modeling.

Fig. 1 Operation of ridesplitting serivces.

3.1 System variables in the ridesplitting market

Fig. 2 depicts the interaction between the variables in a ridesplitting market. Vari-
ables are categorized into two groups, i.e., exogenous variables and endogenous vari-
ables. Exogenous variables include the decision variables of the ridesplitting service
and the attributes of other transport options, while endogenous variables are those
decided by the ridesplitting market per se, including the waiting time, detour time,
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ridesplitting demand, and vacant seat hours, etc. The system mainly contains two
function modules: pricing method and passenger preference. The adopted pricing
method decides the trip fare of ridesplitting services. Passenger preference simulates
the interplay between the passenger demand, the expected detour time, and waiting
time. The attributes of all transport modes, such as the expected waiting time, ex-
pected travel time, and trip fare of public transport, are inputted into the passenger
preference module to estimate mode share. Note, with the attributes of other trans-
portation modes fixed, the trip fare and vehicle fleet size of the ridesplitting service
are two unique decisions of the system.

Fig. 2 Relationships between exogenous variables and endogenous variables in the ridesplitting market,
adapted from Ke et al. (2020a).

Generally, the expected waiting time is deemed to be related to the number of
available vehicles (Cairns and Liston-Heyes, 1996; Li et al., 2019a; Ke et al., 2020a).
Considering the sharing nature of the ridesplitting service (ride requests can be matched
en route with vehicles that have vacant seats), we revise this assumption as: the ex-
pected waiting time depends on the number of available seats. Seat availability is
affected by both the vehicle fleet size and ridesplitting demand. Moreover, due to
the interdependence among the system endogenous, seat availability also indirectly
affects the expected detour time.

In the remainder of this section, how the variables interact is explained in detail,
and the method to calculate the ME is presented. Given the exogenous variables, the
values of system endogenous variables will then be inherently derived by the ME
model.
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3.2 Supply of ridesplitting services

Each trip has its origin and destination. Different from the existing works based on
abstract and aggregate demand-supply models, we model the ridesplitting market at
the network level with consideration of the network structure and traveler OD demand
pattern. Consider a network that allows the travel between OD pairs in set Z. For an
OD pair i in Z, its origin and destination are denoted as io and id , respectively. For a
given hour (the studying interval is set to one hour), the travel demand for i (i.e., the
number of trips from io to id) is Di. We denote Pi,rs as the mode share of ridesplitting
services of i at the ME state, where rs indicates ridesplitting. Then, the passenger
demand for ridesplitting from io to id is estimated by

Qi = DiPi,rs (1)

We know that each seat in ridesplitting vehicles can be either vacant or occupied. We
define available seat capacity Hv as the number of vacant seats in stationary equi-
librium while utilized seat capacity Hc as the number of occupied seats. For a given
hour, the conservation equation of seat capacity is thus given by

Nns = Hv +Hc (2)

where N is vehicle fleet size, ns is the number of seats in a vehicle.
Note that the travel time for a passenger in ridesplitting services consists of two

components: direct trip time (equals to the travel time of driving private cars without
detouring) and detour time (due to the detouring to pick-up and/or drop-off other
passengers). Thus, the expected travel time of i is given by

ti = td
i + t̃i (3)

where ti is the expected travel time from io to id , td
i and t̃i denote the direct trip time

and the expected detour time, respectively. The utilized seat capacity in one hour then
can be calculated as

Hc = ∑
i∈Z

Qiti (4)

Substitute Equation (4) into Equation (2) resulting in

Nns = Hv + ∑
i∈Z

Qiti (5)

This seat capacity conservation equation bridges the demand for and supply of ridesplit-
ting services and must be satisfied in the ME state. Remarkably, it tells that the total
quantity of ridesplitting service supplied to the passengers (Nns) is greater than the
equilibrium quantity demanded (Hc) by a certain amount of slack (Hv), which is anal-
ogous to other mobility service markets. This is also the principle behind the waiting
time estimation.
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3.3 Demand for ridesplitting services

Fig. 2 shows that the passenger preference model is the core of the market model of
the ridesplitting service. Agatz et al. (2012) and Chen et al. (2017) also pointed out
that understanding participants’ behaviors and preferences is essential for dynamic
ridesharing system design and demand modeling, though preferences modeling may
be difficult and time-consuming. The preference model needs to aggregate the effects
of changes in supply and demand to simulate the response of travelers to the changes.
To estimate the ridesplitting passenger demand, we assume all travelers make deci-
sions objectively based on the perceived utilities of the available transport modes. As
the easiest and the most used discrete choice model for estimating the travel behaviors
of individuals (Train, 2009), the Multinomial Logit (MNL) model has been applied in
many aspects of the transportation community, including the transport mode choice
behavior (Vrtic et al., 2010; Chen et al., 2013; Krueger et al., 2016). This study also
applies MNL to capture passenger preference in the multi-modal transport context.
Based on the random utility theory, the utility of choice can be calculated by

U =V + ε (6)

where U is the utility, V is the deterministic component of the utility, and ε is the
disturbance.

Many factors are closely related to the consumers’ intention to use ridesplitting
services (Wang et al., 2020), such as personal inventiveness and environmental aware-
ness. We refer to a recent study, Abouelela et al. (2022), a comprehensive investiga-
tion of the factors influencing the shift to shared ride services. Nevertheless, time
cost and monetary cost are the main factors influencing passengers’ choice among
the available transportation options. Considering the discrepancy between the per-
ceptions of travel time and waiting time, the utility function (the deterministic part of
the utility) of taking one transport mode can be evaluated as

V = βtt +βww+βrr (7)

where t,w, and r denote travel time, waiting time, and trip fare. βt ,βw and βr are the
corresponding preference coefficients.

Assuming the disturbance term ε follows the Gumbel distribution, the probability
of one (from io to id) choosing ridesplitting services is then given by

Pi,rs =
eVi,rs

∑ j∈M eVi, j
(8)

where M is the set of available transport modes in the system, such as private vehicles,
public transport and ridesplitting.

Combining Equation (8) and Equation (1), we can estimate the ridesplitting de-
mand for i by (omit the subscript rs in the following text)

Qi =
DieVi

eVi +µi
(9)

where µi = ∑ j∈{M−rs} eVi, j aggregating the utilities of the options other than ridesplit-
ting for ease of representation.
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3.4 Expected detour time modeling

Real operations data shows that the average detour time between two passengers
in ridesourcing services is inversely proportional to the demand for the service (Ke
et al., 2020a,b). Mathematically, the average detour time between two passengers
can be estimated by t̃(2) = Ã/∑ j Q j, where Ã is a market-specific parameter. ∑ j is for
∑ j∈Z in the following text unless otherwise noted. We follow this average detour time
model but relax the two-passengers-most restriction (two ride requests are pooled in
the ridepooling services at most), which is also adopted in Wang et al. (2021), to
the general case. Intuitively, the increase in the number of requests can shorten the
average distance between every two passengers, reducing the average detour time.
However, it also increases the possibility of pairing more passengers for a vehicle and,
therefore, increases the detour time. The subtle contradictory effects of the demand
increase should be incorporated into the detour time model.

Let t̄d
Q denote the mean of direct trip time of all trips, then t̄d

Q = ∑ j Q jtd
j /∑ j Q j.

If there is no detouring, the maximum number of requests a vehicle can serve in one
hour (without deadhead time between consecutive requests) is given by n(t) = 1/t̄d

Q.
However, due to the limitation of vehicle fleet size, the number of trips assigned to a
vehicle is n(a) =∑ j Q j/N. As a result, the expected number of passengers in a vehicle
is na/nt . The detour time of a vehicle is then given by (the time to pick up the first
passenger is also counted)

t̃(v) =
n(a)

n(t)
t̃(2)i (10)

Moreover, we follows the assumption in Ke et al. (2020a): the detour time of
passengers is a fraction of the detour time of vehicles, i.e., t̃(p) = γ t̃(v), where γ ∈
(0,1). In the ridesplitting markets, vehicles and passengers are matched en route, and
vehicles are allowed for detouring within the neighborhood to pick up new requests.
This complicates the problem. Nevertheless, it is plausible to impose the following
assumption:

Assumption 1 Given the network structure, trips with longer direct trip time are
more likely to have a detour.

For a OD pair i, we thus introduce a modificator, td
i /t̄d , to capture the network spatial

difference in the detouring probability. The detour time of i can then be expressed as

t̃i =
td
i

t̄d t̃(p) =
td
i γÃ∑ j Q jtd

j

t̄dN ∑ j Q j
(11)

For simplicity of presentation, we define A ≜ γÃ and Ai ≜ Atd
i /t̄d , such that

t̃i =
Ai ∑ j Q jtd

j

N ∑ j Q j
(12)

The expected detour time model implies the detour time is correlated to the spa-
tial characteristics of the network structure (Ai,∀i), the vehicle fleet size (N) and
the spatial distribution of ridesplitting demand (∑ j Q jtd

j ). Note that ridesplitting en-
compasses many dynamics due to the allowance of dynamic route variation and en
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route matching. Ridesplitting vehicles can search a wider area for requests, which
significantly challenges the integration of vehicle allocation to the detour time mod-
eling. Nevertheless, the vehicle allocation is specifically considered in the waiting
time model described in the following subsection.

3.5 Expected waiting time modeling

As per Li et al. (2019a), if assuming the matching process of riders and vehicles fol-
lows the Cobb-Douglas type production function, the expected waiting time can be
derived to be inversely proportional to the square root of the number of idle vehi-
cles. Considering the sharing nature of ridesplitting services and the possibility of
matching en route, we make the following assumption:

Assumption 2 The waiting time of the ridesplitting service is inversely proportional
to the square root of the available seat capacity.

In addition, we adapt this assumption for fitting network-level modeling by consider-
ing (i) the effect of demand over the supply offered to the respective OD pair, (ii) the
spatial difference of vehicle allocation, and (iii) the supply attraction relative to de-
mand in the neighborhood. Mathematically, the expected waiting time for trips from
io to id is estimated by

wi =
BQθ

i

Ωi

√
ηi(Nns −∑ j Q jt j)

(13)

where B is a market-specific parameter.
Qθ

i (θ > 0) is used to incorporate the first consideration, i.e., demand over the
supply offered to i, where θ measures the intensity of the influence. More demand
would produce a “competition” among passengers for the limited supply, especially
when the demand is greater than the supply. This is in common with the waiting time
model in the network-level e-hailing taxi market constructed in He et al. (2018).

ηi ∈ (0,1) is a percentage value measuring the vacant seat capacity assigned to
i, incorporating the second consideration. Note that ∑ j η j = 1. The vacant seats are
distributed/allocated over the network in accordance with the spatial characteristics
of the OD pair, such as the distance of the origin and destination to the city center
(denote by λio and λid , respectively, for i) and the OD distance (denote by di). The
waiting time for OD pairs near the city center is shorter since more vehicles drive
through the city center and thus more supply (Li et al., 2019b). Tu et al. (2021) also
found that the distance to city center is one of the key influencing factors of ridesplit-
ting ratio. Likewise, the distance between io and id also determines if the vehicles are
willing to detour to catch these requests. For example, Fig. 3 depicts a homogeneous
network with 25 zones. The waiting time of trips from C1 to C2 should be less than
from C3 to C4, as λC1 is similar to λC3 but λC2 is smaller than λC4. The waiting time
from C1 to C3 should also be short as C1 is close to C3 despite being far from the
city center.
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Fig. 3 Consideration of vehicle allocation.

In this study, we apply the form of inverse distance weighting function to calculate
the seats distribution as below.

ηi =

(
(λio +λid )

ρcdρd
i

)−ρ

∑ j

(
(λ jo +λ jd )

ρcdρd
j

)−ρ
(14)

where ρc and ρd are positive parameters for measuring the influence of the proximity
to the city center and OD distance, respectively, and ρ (ρ > 0) is the power parameter.

Intrinsically, ηi captures the inherent spatial characteristics of the network struc-
ture. In contrast, Ωi(Ωi > 0) is used to measure the supply attraction caused by
the relatively high demand for the neighboring pairs (i.e., the third consideration),
which essentially depends on the temporal demand patterns of the market. To clarify,
ridesplitting can match passengers with either closer origins or destinations or both
(Wang et al., 2019). Specifically, Ωi > 1 means more vehicles are coming to serve the
neighboring pairs of i and vice versa. Here neighboring pairs are defined as follows:

Definition 3.1 Neighboring pairs of i are the OD pairs from the zones within the
neighborhood of io to the zones within the neighborhood of id . The neighborhood
of a zone is the area that can reach the zone within a time interval (or a distance
threshold) ε̄ , including the zone per se.

A graphical example is also provided in Fig. 4. All OD pairs from the neighborhood
of io to that of id are the neighboring pairs of i, such as C1 → id . Ωi, named as supply
attraction factor, is given by

Ωi =
nz ∑ j∈Zi Q j

∑k∈Z ∑ j∈Zk
Q j

(15)

where nz is the number of OD pairs in Z, Zi is the set of neighboring pairs of i which is
a subset of Z. Ωi also reflects that ridesplitting vehicles are allowed deviating from a
given path within a service area, which is a commonality with the Mobility Allowance
Shuttle Transport (MAST) service (Quadrifoglio et al., 2008).

For simplicity of presentation, we define Bi ≜ B/
√

ηi, such that

wi =
BiQθ

i

Ωi
√

Nns −∑ j Q jt j
(16)
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Fig. 4 Definition of buffer areas.

3.6 Equilibrium in the ridesplitting markets

From Fig. 2, we know that both expected detour time t̃ and expected waiting time w
are related to the vehicle fleet size N and ridesplitting demand Q (Hv can be replaced
by N and Q). Here Q is the vector of ridesplitting demand for all OD pairs. Thus, with
a slight abuse of notation, we can rewrite detour time and waiting time as t̃(Q,N) and
w(Q,N), respectively. Recall that the expected travel time is the sum of direct trip
time and expected detour time, so we can rewrite the travel time as t(Q,N). The
utility function for ridesplitting services is then given by

Vi(Q,N) = βtti(Q,N)+βwwi(Q,N)+βrri (17)

Substituting Equation (17) into Equation (9), the ridesplitting passenger demand
thus becomes an implicit function of itself.

Qi =
DieVi(Q,N)

eVi(Q,N)+µi
(18)

The ME in the ridesplitting market is the ultimate stable state of the market (the
supply-demand interaction eventually damps out), at which the relationships between
the system endogenous variables (e.g., passenger demand, average detour time) can
be satisfied under a specific operation strategy (e.g., vehicle fleet size, trip fare).
Mathematically, the demand-supply equilibrium is established when both demand
and supply equations are satisfied simultaneously (Arrow and Debreu, 1954). More
specifically, under certain operation strategies, an equilibrium in a ridesplitting mar-
ket is a set of values of t̃i,wi and Qi that satisfies the equations system composed of
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Equation (5), (12) and (16)-(18) for all i in Z. For convenience, we put them below.

Nns = Hv +∑
i

Qiti

t̃i =
Ai ∑ j Q jtd

j

N ∑ j Q j
,∀i ∈ Z

wi =
BiQθ

i

Ωi
√

Nns −∑ j Q jt j
,∀i ∈ Z (19)

Ωi =
nz ∑ j∈Zi Q j

∑k∈Z ∑ j∈Zk
Q j

,∀i ∈ Z

Vi(Q,N) = βtti(Q,N)+βwwi(Q,N)+βrri,∀i ∈ Z

Qi =
DieVi(Q,N)

eVi(Q,N)+µi
,∀i ∈ Z

It is worth pointing out that Equation (5) and the set of Equation (18) given different i
describe the supply of and demand for ridesplitting services, respectively. In practice,
this equations system can be solved via a hybrid method for nonlinear equations
proposed in Powell (1970). Our numerical experiments indicate that the resultant
solutions are always unique under rational operation strategies.

4 Market scenarios and optimal operation strategies under distance-based
unified pricing

This study investigates the inequity problem among individual trips in ridesplitting
services caused by the combined effect of deviation in travel time and the commonly
used unified pricing. Ridesplitting services can be operated by either private compa-
nies or public transportation agencies, leading to the difference in operation objective
and inequity severity. Hence, it is very important to analyze the market performance
under the unified pricing method and compare different market scenarios. This sec-
tion introduces two representative scenarios extensively discussed in the literature
and shown in actual operation as below.

(1) Monopoly scenario. A monopolist aims to maximize its profit.
(2) Social optimum scenario. The platform aims to maximize social welfare.

As mentioned in Li et al. (2019b), the payment of ridesplitting services is mostly
based on the actual travel time and distance of the trip. Without loss of generality,
based on the proposed network equilibrium, we derive an algorithm to find the opti-
mal solutions for the two scenarios under distance-based unified pricing. One should
be able to extend it to the case of time-based unified pricing accordingly. The fare
structure used in the distance-based unified pricing method is such that trip fares are
proportional to the travel distance. The trip fare of i is given by

ri = pdi (20)
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where p is the unit price. The remainder of this section first expounds on the monopoly
and social optimum scenarios, and then presents the optimization algorithm for find-
ing out the monopoly optimum (MO) and the social optimum (SO) for the two sce-
narios. A utility-based compensation pricing method is then proposed in the next
section and will be applied to enhance the equity among individuals in the MO and
SO operation scenarios separately.

4.1 Monopoly scenario

The ridesplitting service is operated with for-hire drivers and vehicles, which differs
it from ridesharing. A ridesplitting monopolist attempts to maximize its profit by
optimizing the vehicle fleet size and trip fare. Profit is the difference between revenue
and operating cost. The problem can then be formulated as

(P1) maximize Π(N,r) = ∑i DiPiri −φN (21)

where φ is the operating cost of a vehicle in one hour, r is the vector of trip fare of all
OD pairs. The first-order optimality conditions of this problem are:

∂Π

∂ p
= ∑

i

(
Di

∂Pi

∂ p
ri +Qidi

)
= 0 (22)

∂Π

∂N
= ∑

i
Di

∂Pi

∂N
ri −φ = 0 (23)

After some straightforward work we arrive at:

∂Π

∂ p
= ∑

i
DiPi(1−Pi)

(
βt

∂ ti
∂ p

+βw
∂wi

∂ p
+βrdi

)
ri +∑

i
Qidi = 0 (24)

∂Π

∂N
= ∑

i
DiPi(1−Pi)

(
βt

∂ ti
∂N

+βw
∂wi

∂N

)
ri −φ = 0 (25)

Due to the sophisticated interdependence among system endogenous variables
(e.g., waiting time, detour time, ridesplitting demand), the first-order conditions of
P1 cannot be solved analytically. Thus, the algorithm presented later in Section 4.3
will be used for this purpose. One may note that the derivatives of profit are functions
of the derivatives of detour time and waiting time. For ease of reading, the method
for calculating the derivatives of detour time and waiting time with respect to p and
N is omitted here and can be found in Appendix B.

4.2 Social optimum scenario

Social welfare also known as social surplus, equals the sum of consumers’ and pro-
ducers’ surplus (Cairns and Liston-Heyes, 1996). Mathematically, the social welfare
maximization problem can be constructed as

(P2) maximize S(N, p) = ∑i
∫ Qi

0 Fi(x)dx−φN (26)
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where Fi(·) is the inverse of the demand function given in Equation (9). From Equa-
tion (9), we can easily get

Fi(x) = ri =
1
βr

[lnx− ln(Di − x)+ ln µi −βtti −βwwi] (27)

Note that the consumers’ surplus must be carefully determined due to the in-
clusion of waiting time and detour time in the demand curve. The integral in P2 is
obtained by integrating under a hypothetical demand curve in which the service level
(waiting time, detour time) is held fixed while the trip fare varies, rather than under
the real market demand curve (Anderson and Bonsor, 1974; Cairns and Liston-Heyes,
1996).

After some straightforward work we can write the first-order conditions of P2 as

∂S
∂ p

= ∑
i

[
Qi

βr
(−βt

∂ ti
∂ p

−βw
∂wi

∂ p
)+DiPi(1−Pi)(βt

∂ ti
∂ p

+βw
∂wi

∂ p
+βrdi)Fi(Qi)

]
= 0

(28)

∂S
∂N

= ∑
i

[
Qi

βr
(−βt

∂ ti
∂N

−βw
∂wi

∂N
)+DiPi(1−Pi)(βt

∂ ti
∂N

+βw
∂wi

∂N
)Fi(Qi)

]
−φ = 0

(29)

Similarly, the first-order conditions of P2 cannot be solved analytically. We can
see that the derivatives of welfare are also functions of derivatives of detour time and
waiting time.

4.3 Gradient Descent algorithm for optimizing operation strategies

Due to the difficulty in tackling the first-order optimality conditions of P1 and P2, we
will apply the Gradient Descent (GD) algorithm to approximate the optimal solutions
for the problems. Keller (2013) proved that under certain conditions, the local maxi-
mum of the non-convex problem P1 in terms of the prices is also a global maximum.
Moreover, the numerical experiments conducted in the existing literature on taxi mar-
kets (Yang et al., 2002) and ridepooling markets (Ke et al., 2020a) also found that, in
rational ranges of regulated decisions, the local optimums of problems P1 and P2 in
terms of price and vehicle fleet size are also the global optimums. It means that though
gradient-based algorithms only ensure convergence to the local minimum, they can
be applied to solve problems P1 and P2. The experiment results in this study show
that the proposed algorithm can solve the two problems effectively, and the network
equilibrium for each combination of decision values is unique in general.

Define the operation strategy as O ≜ (N, p). Let J (O) denote the objective func-
tion, which can be either Π(O) or S(O). Then the GD for solving the relevant opti-
mization problems can be described as Algorithm 1.
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Algorithm 1 Gradient Descent for solving unified pricing optimization problems
1: Initialize the operation strategy O(0), algorithm step size ψ , maximum number of iterations τmax
2: Initialize the iteration index: τ = 0
3: for τ < τmax do
4: Compute the market equilibrium state under O(τ):

(1) Compute trip fare ri,∀i via Equation (20)
(2) Compute ridesplitting demand Qi,∀i, expected detour time t̃i,∀i, expected waiting time wi,∀i

via Equation (19)

5: Compute the partial derivatives of travel time ti,∀i and waiting time wi,∀i with respect to unit price
p and vehicle fleet size N under O(τ), respectively:

(1) Compute the partial derivatives with respect to p via system {Equation (48) to (51), ∀i}
(2) Compute the partial derivatives with respect to N via system {Equation (52) to (55), ∀i}

6: Compute the partial derivatives of the objective function ∂J
∂ p ,

∂J
∂N under O(τ):

(1) Monopoly scenario: compute ∂J
∂ p via Equation (24); compute ∂J

∂N via Equation (25)

(2) Social optimum scenario: compute ∂J
∂ p via Equation (28); compute ∂J

∂N via Equation (29)

7: The gradient direction: g(τ) = ∇J (O(τ)) =
[

∂J
∂ p ,

∂J
∂N

]
8: if g(τ) does not change (< εmax) then
9: Output the optimal solution: O∗ = O(τ)

10: break
11: end if
12: Improve the operation strategy: O(τ+1) = O(τ)+ψg(τ)

13: Update the iteration index: τ = τ +1
14: end for

5 Utility-based compensation pricing

Though ridesplitting offers a promising increase in LoS compared to public transit
and taxi services (Ma et al., 2019), the variance in waiting time and detour time due
to the dynamically matching and routing can easily render the inequity of LoS among
riders at platforms adopting simple unified pricing methods. Kleiner et al. (2011) and
Wang and Yang (2019) pointed out that the variance in the potential detour distances
plays a negative role in the popularity of ride-shares. As a result, more efforts are
needed to innovate appropriate methods to enhance the LoS equity in ridesplitting
services. Considering the tight connection between LoS and the perception of the
utility, we propose a utility-based compensation pricing method in this section, giving
the first shot on the problem.

Due to the discrepancy of ODs and the uncertainty involved in ridesplitting ser-
vices, passengers always pay different monetary and time costs for trips. This causes
inequity among passengers, represented by the variance of LoS. In Wang et al. (2018),
the quality of matching in ridesplitting services is typically defined as the sum of the
utilities of all individuals in the system. de Ruijter et al. (2020) and Ma et al. (2019)
also suggested that trip fare and travel time are essential indicators of LoS of shared
ride services. Inspired by the literature, we introduce the following assumption to
quantify the LoS of ridesplitting services.



A ridesplitting market equilibrium model with utility-based compensation pricing 19

Assumption 3 The level of service of a ridesplitting trip can be represented by the
corresponding utility.

Notice that the utility function applied in this study is a linear combination of trip fare,
waiting time, and travel time, which captures the main factors affecting passengers’
perception; thus, it is plausible to hypothesize the utility is somehow tantamount to
LoS. Then, the proposed utility-based compensation pricing method is to improve the
equity among passengers by reducing the variance of trips’ utilities calculated on the
basis of the initial fee (unified pricing), travel time, and waiting time. In particular,
by this compensation approach, trips with an initial utility less than a predefined
utility threshold will be compensated based on a platform-determined function. Apart
from equity, it is also expected to promote the LoS to some extent. Furthermore, an
increase in waiting time and detour time could be observed due to the attraction of
more ridesplitting demand because of the improvement in LoS and equity.

The remainder of this section first elucidates the compensation principle adopted
and then presents the method to approximate the new equilibrium state after applying
compensation pricing.

5.1 Compensation principle

To define the compensation principle, we need to specify the utility threshold value
(termed as the compensation reference point, CRP) and the method to calculate the
amount of compensation (termed as compensation function). Trips below CRP will
be compensated with an amount of money determined by the compensation function.
Moreover, in order to connect CRP with observed utilities of trips and thus guarantee
the compatibility and viability of the compensation method in markets with different
characteristics, we define CRP as a proportion of the mean of trips utilities, which
can be written as

a = αV̄ (30)

where α is named as the compensation reference factor (CRF). Intrinsically, the com-
pensation approach influences LoS and equity from two directions: (i) For the trips
whose initial utility is less than αV̄ , their utilities will increase attributed to the com-
pensation; (ii) For the trips whose utility is greater than αV̄ , however, their utilities
will reduce due to the increasing of waiting time and detour time contributed by the
induced demand. As a consequence, it is plausible to observe the improvement of
equity. Besides, the improvement of LoS in the following experiments demonstrates
that the former effect is stronger than the latter.

In the unified pricing method, system endogenous variables under certain opera-
tion strategy (N, p) can be computed directly through the ME model. Trips are con-
sidered at the network level, and variables are aggregated based on ODs. Differently,
the compensation method developed in this section is individual-based. The results
in Chen et al. (2017), Li et al. (2019b), Zheng et al. (2019) and Chen et al. (2021)
showed that the travel distance, travel time and waiting time follow log-normal distri-
bution. On the other hand, we also can estimate well-fitted log-normal distributions
for the direct trip time and trip distance from the simulation data that will be used in
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our case studies, as shown in Fig. 5. In Fig. 5, δ is the shift from zero, and µ and
σ are the mean and standard deviation of the variable’s natural logarithm, such that
ln(X +δ )∼ N (µ,σ) where variable X is travel distance or travel time. Since travel
time is the sum of waiting and detour time, detour time also follows a log-normal
distribution. Thus, we make the following assumptions for the related variables to
ease processing.

Assumption 4 Attribute x (i.e., w, d, t̃ and td) of trips from io to id follows a log-
normal distribution with δx, µx and σx as the shift from zero, mean and standard
deviation, respectively.
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Fig. 5 Distribution of simulated direct trip time and travel distance.

The parameters of direct trip time distribution and trip distance distribution can
be directly estimated from the simulation data of the respective ODs. We assume
there is no shift from zero for the waiting time and detour time distributions. Note,
for a variable X following log-normal distribution (no shift), its expected value and
variance can be estimated by

E(X) = eµ+ 1
σ (31)

Var(X) = e2µ+2σ2 − e2µ+σ2
(32)

from which we can get

µ =
1
2
[
4log(E(X))− log

(
Var(X)+E2(X)

)]
(33)

σ
2 = log

(
Var(X)+E2(X)

)
−2log(E(X)) (34)

The means of waiting time and detour time are known. After assuming the stan-
dard deviations based on the means empirically, we can obtain the parameters of the
log-normal distribution generators with the above estimators. The attributes of indi-
vidual trips can then be generated from the fitted distributions.

With Assumption 4, we can calculate the utility of each individual trip by

Vi,k = βtti,k +βwwi,k +βrri,k (35)
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where k is the index of the trip, and ti,k = t̃i,k + td
i,k. After compensation, the trip fare

is given by
ra

i,k = pdi,k + ci,k (36)

where ci,k is the amount of compensation, ra
i,k is the trip fare after compensation.

Recall that the utility of a trip after compensation must satisfy a predefined function
termed as compensated utility function, which describes the relationship between the
utility before and after compensation. The difference between the initial utility and
the utility resulted from the compensated utility function determines the amount of
compensation. Specifically, the compensation is given by

ci,k(Vi,k) =
V a

i,k −Vi,k

βr
(37)

V a
i,k = f a(Vi,k) (38)

where Vi,k is the utilities before compensation, V a
i,k is the target utility, and f a(Vi,k) is

the compensated utility function for calculating the target utility, which is a function
of Vi,k. Rigorously, We define the compensated utility function f a(Vi,k) as follow.

Definition 5.1 A compensated utility function is a function that describes the rela-
tionship between the utilities of trips before and after compensation. The compen-
sated utility function should hold the following properties.

(1) The utility after compensation should not be larger than the compensation refer-
ence point, i.e., V a

i,k ≤ a,∀i,k.
(2) The order of trips sorted by utility should not change after compensation, i.e., if

Vi1,k1 ≤Vi2,k2 , then V a
i1,k1

≤V a
i2,k2

,∀i1, i2,k1,k2.
(3) Trips with a utility farther below the compensation reference point should get

more compensation than those closer, i.e., if Vi1,k1 ≤ Vi2,k2 ≤ a, then ci1,k1 ≥
ci2,k2 ≥ 0,∀i1, i2,k1,k2.

5.2 Market equilibrium

Due to the changes in the LoS of ridesplitting services, a new balance will present.
For the purpose of comparative analysis, we need to estimate the market equilibrium
for the case under the proposed compensation pricing method. To this end, trips need
to be re-aggregated according to the ODs to estimate the new equilibrium. The new
OD-based trip fare is given by

ři =
1
Di

∑
k

ra
i,k (39)

The equilibrium under compensation pricing will then be explained by the equa-
tions system provided in Equation (19) after plugging the new trip fare. It is worth
pointing out that, in practice, the CRP for a market is decided based on the historical
operation data.
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Table 1 Estimation of preference coefficients.

Coefficient Value Standard error t-test p-value

βr (/Euro) -0.589 0.0509 -11.6 0
βt (/min) -0.128 0.0139 -9.18 0
βw (/min) -0.113 0.0134 -8.46 0

6 Numerical experiments

In this section, we introduce the study area, data, and parameters used for the experi-
ments first. Next, we evaluate the performance of the proposed ridesplitting market on
the operational objectives described in Section 4, i.e., profit maximization and social
welfare maximization, and evaluate the influence of decision variables on the system
variables and objectives. We then analyze the difference in the market under the pro-
posed utility-based compensation pricing method and further explore its impact and
effectiveness on the LoS and service equity.

6.1 Experiment setups

Tsiamasiotis et al. (2021) designed and performed a web-based stated-preference sur-
vey to identify factors affecting the travel behavior of passengers due to the intro-
duction of dynamic vanpooling services. 27 hypothetical scenarios were created and
divided into three blocks. In each scenario, three alternatives were provided, includ-
ing private car, public transport, and dynamic vanpooling. Respondents were asked
to state their preference in a five-point rating scale given the values of in-vehicle
travel time, monetary cost, and waiting time (including walking time), which con-
forms to the requirement of the model proposed in this study. We utilize the ordered
logit model (Train, 2009) to estimate the preference coefficients based on this survey.
Table 1 lists the estimation result. It can be seen that the p-values for the estimates
are approximated to zero, which indicates the estimation result is significant with a
confidence level of 99%.

The layout of the Munich area used in the following experiments is shown in
Fig. 6. This area (about 900 km2) is divided into 20 zones resulting in 20×19 = 380
possible OD pairs (internal trips of each zone are ignored). The road traffic demand
data partially calibrated with traffic counts collected on May 9th, 2017 (Tuesday) are
used. Note, since both public transport and private transport are considered, we need
to scale up the road traffic demand (private transport) based on the modal split of the
Munich network. In order to mitigate the randomness of the ridesplitting market, we
only consider the OD pairs whose travel demand is greater than 100 rather than all
OD pairs within the network. This restricts the services to 45 ODs with 7,726 trips
in total (we focus on an off-peak period between 5 a.m. to 6 a.m.). The direct trip
time and distance of each OD pair are estimated by averaging all trips of the same
OD generated by Simulation of Urban MObility (SUMO) (Lopez et al., 2018). To
eliminate the stochasticity in simulations, results from 10 replications are averaged.
All simulations are implemented at the mesoscopic level through the non-iterative
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dynamic stochastic user route choice assignment (i.e., automated routing in SUMO).

Fig. 6 Network of the Munich city

We assume the attributes of public transport and private vehicles are given as in
Table 2. It is worth noting that the walking time to the station of public transport and
the searching time for parking of private car is counted as a part of the waiting time.
The determination of attribute values in Table 2 partially refers to Tsiamasiotis et al.
(2021), while the attributes of ridesplitting services are inherently decided by the ME
model. Moreover, we assume the operating cost per vehicle per hour φ = 15 Euro/h.
Other prices imposed externally, such as congestion pricing (de Palma and Lindsey,
2011; Do Chung et al., 2012; Wang et al., 2014; Laval et al., 2015; Cheng et al., 2017)
and road pricing (Cramton et al., 2018), are not considered in this study and are left
for future work.

Table 2 Attributes of public transport and private vehicles (source: based on Tsiamasiotis et al. (2021)).

Mode Waiting time (min) Travel time (min) Trip fare (Euro)

Public transport 12 2td
i 0.3di +1.5

Private car 5 td
i 0.5di +3

In order to calculate the market model parameters (A and B), we assume the av-
erage detour time and average waiting time of the ridesplitting services in Munich
is 30% of the average direct trip time and 4 minutes, respectively, when the vehicle
fleet size N̂ = 400 and the unit price p̂ = 1.00 Euro/km. The average trip fare then is
r̂ = p̂d̄. Such a market leads to A = 120.546,B = 0.026 by using the method present
in Appendix A, which will be applied in all hereafter experiments. In practice, one
can calibrate the parameters with operation data to characterize the market of interest.
Let θ = ρc = ρd = ρ = 1 in the waiting time model.
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When generating the individual trips for calculating the compensations, the stan-
dard deviations of waiting time and detour time are set to be one-third of the means.
We apply the following compensated utility function to calculate the utility after com-
pensation in this study. For ease of reading, its derivation is omitted here and can be
found in Appendix C.

V a =

{
V if V > a
−
√

2aV −a2 otherwise
(40)

As a result, the compensation function is given by

ci,k =

{
0 if Vi,k > a
1
βr
(−

√
2aVi,k −a2 −Vi,k) otherwise

(41)

6.2 Operations under distance-based unified pricing

This section shows the operation performance of ridesplitting services under the
distance-based unified pricing method. The operational objectives and endogenous
variables are plotted as contour maps in a two-dimensional space formed by the de-
cisions in Fig. 7 and Fig. 8, respectively. Meanwhile, the monopoly optimum (MO)
and social optimum (SO) found by the GD algorithm are also marked in the figure.

Fig. 7 shows the iso-profit contours and iso-welfare contours in a two-dimensional
space with vehicle fleet size on the x-axis and unit price on the y-axis. As pointed out
by Yang and Wong (1998), in particular, if the fleet size is too small, a steady-state
equilibrium solution may not exist for a network-based equilibrium model. Accord-
ingly, we can also observe an empty region in the lower left of the figure for the
ridesplitting market. Further, it can be seen that the optimal unit price for a monopoly
is higher than the optimal unit price at SO, while the MO fleet size is greater than
the SO fleet size. Let (N∗

mo, p∗mo) and (N∗
so, p∗so) denote the coordinates of MO and SO,

respectively. Then, p∗mo > p∗so and N∗
mo < N∗

so. This is in accord with our daily un-
derstanding. To benefit the public, the services should be operated more widely and
cheaply. According to Fig. 7, generally, both profit and welfare first increase with the
unit price and fleet size and then decrease. Note that when the unit price is relatively
high, the joint influence of decision variables on profit and welfare are similar. When
the unit price is relatively small, however, the movements of the two contours become
significantly different. It implies that the design of operation strategies should be ded-
icated specifically to a market with particular consideration of its characteristics and
objectives. Moreover, the shape of the contours also verifies the finding that, in the
reasonable ranges of decision variables, the local optimum of P1 or P2 is also the
global optimum. Thus, it is appropriate to apply the GD algorithm to solve them.

Fig. 8a-Fig. 8d depict the contours of ridesplitting demand, seats occupancy rate,
network average detour time and network average waiting time, respectively. Let λ , ¯̃ti
and w̄i denote the seats occupancy rate, network average detour time and network
average waiting time, then we have

λ =
∑ j Q jt j

Nns
, ¯̃t =

∑i Qit̃i
∑i Qi

, w̄ =
∑i Qiwi

∑i Qi
(42)
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Fig. 7 Profit and welfare in a two-dimensional space of vehicle fleet size and unit price.

Noteworthy, λ reflects the profitability of the ridesplitting service market at a
regulated price (Yang and Wong, 1998). Fig. 8b shows that λ decreases with both unit
price and vehicle fleet size. Decreasing with the unit price is because a higher price
will reduce the passenger demand due to the negative price elasticity. Decreasing with
the fleet size is because, despite more vehicles can attract more passengers due to less
detour time and waiting time, the induced demand cannot meet the increment of seats
supply. Meanwhile, we can see that MO occupancy and SO occupancy are 0.25 and
0.20 (excluding the driver), respectively, resulting in a vehicle occupancy rate of 2.5
persons and 2.2 persons (including the driver), which are more superior compared to
the German average of 1.5 persons (van Dender et al., 2013).

Further, it can be seen from Fig. 8c and Fig. 8d that the network average detour
time is mainly dependent on the vehicle fleet size. In contrast, the network average
waiting time is mainly affected by the unit price. This phenomenon conforms to the
assumptions and their formulations. If we assume the direct trip time is the same for
all OD pairs (denoted as td), then Equation (12) becomes t̃i = Atd/N. As a result, ¯̃t =
Atd/N such that ¯̃t ∝ 1/N. It indicates that fleet size is the dominant of network average
detour time. However, we can also observe that price influence is strengthened when
the fleet size becomes larger. The possible reason may be the complicated network
structure enhances the heterogeneity of the direct trip time such that ridesplitting
demand plays a more important role in determining the detour time. In contrast, as
shown in Fig. 8a, ridesplitting demand is primarily dominated by the unit price. In
terms of the network average waiting time, we have wi ∝ Qθ

i /
√

Nns −∑ j Q jt j. The
influence of N is weakened by the square root operator. Thus it mainly depends on
the ridesplitting demand and thus unit price. This relationship would not change after
averaging.

Recall that in market assumptions, the unit price is 1.00 Euro/km, the fleet size is
400, and the average waiting time is 4 minutes. However, at MO, for instance, the unit
price becomes 0.53 Euro/km, and the waiting time increases to 15 minutes with 356
vehicles. It implies that passengers can bear a longer waiting time to enjoy a cheaper
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Fig. 8 Endogenous variables in a two-dimensional space of vehicle fleet size and unit price.

service. We want to mention that the aforementioned system performance measures
depend on the market assumptions (A and B), the experiment market/network, and
the preference coefficients in the utility function.

6.3 Benefits of the utility-based compensation pricing

To improve the equity and expected LoS, we proposed a utility-based compensation
pricing method for ridesplitting services. LoS and equity are represented by the mean
and standard deviation of trips utilities, respectively. In this section, the evaluation of
market performance under different CRFs (α) is conducted on the basis of the MO
(i.e., N∗

mo = 356, p∗mo = 0.53) operation strategy and the SO operation strategy (i.e.,
N∗

so = 623, p∗so = 0.36) separately.
Fig. 9a depicts the profit, social welfare, and mean of utilities under different

CRFs on the basis of the MO solution with CRF on the x-axis, profit/welfare on the
left y-axis, and mean utility on the right y-axis. Clearly, profit and welfare increase
with CRF and end up with the respective basic values, where basic values are the
values at the equilibrium of the MO solution for the unified pricing scenario. It can
be seen that the peaks of the surplus and profit curves are higher than the basic ones. It
implies that the proposed compensation pricing approach can benefit both profit and
welfare if disregarding the seek of improving LoS and equity. The maximum profit
and maximum welfare increase by 2.9% (from 6,378 Euro to 6,560 Euro) and 6.5%
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(from 11,630 Euro to 12,388 Euro), respectively. Denote the x coordinate of the first
meeting point between the basic profit (dashed blue) and the profit curve (solid blue)
as α∗

p . Similarly, denote the x coordinate of the first meeting point between the basic
surplus and the surplus curve as α∗

s . Then, we have α∗
s < α∗

p . Since the curve of mean
utility is monotonically decreasing, so ∆Vs > ∆Vp, where ∆Vs and ∆Vp denote the
improvement of LoS under α∗

s and α∗
p , respectively. Likewise, compensation under

α∗
s can also improve service equity (utility variance) more than under α∗

p , i.e., ∆σs >
∆σp, as shown in Fig. 9b.
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Fig. 9 Performance of the utility-based compensation pricing method under different CRFs based on the
MO operation strategy.

Further, as indicated in Fig. 9b, implementing compensation under α∗
s will lead

to a reduction of profit by ∆Πs. This provides a reference to the relevant department
regarding the development of the subsidy policy. To maximize the LoS and equity
of ridesplitting services without sacrificing any profit and social welfare, the service
operator implementing the compensation pricing approach should be subsidized with
an amount of at least ∆Πs (the analysis regarding subsidy is detailed in Section 7.2.1).
Suppose no subsidies are possible under α∗

p . In that case, one can not only improve the
LoS and equity (though the improvement is shrunken compared to the case under αs)
but also contribute to additional welfare of ∆Sp (5.9%, from 11,630 Euro to 12,320
Euro). One can even see an increase in both profit and welfare in the range between
αp and the second meeting point between the basic profit and the profit curve. It is
worth noting that the benefit to LoS and equity would be impaired with the increase of
α . Table 3 provides the influence on the system endogenous variables when applying
compensation pricing under the two mentioned meeting CRF points.

Table 3 The performance of compensation pricing on the system endogenous under MO.

CRF Ridesplitting demand Seats occupancy rate Waiting time Detour time

α∗
p 10.3% 14.5% 15.0% 6.1%

α∗
s 33.6% 41.0% 48.5% 9.0%
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Fig. 10 Performance of the utility-based compensation pricing method under different CRFs based on the
SO operation strategy.

Fig. 10 illustrates the performance of the proposed compensation approach in
the SO operation scenario. It is worth noting that the first meeting point between
the basic profit and the profit curve does not exist. That is, a subsidy is necessary
for the operator to implement the compensation method in this case. Otherwise, it
will produce a profit loss compared to the unified pricing case. Likewise, there is also
nearly no increase in the maximum welfare (only increase about 0.6%). Moreover, the
improvement of LoS and equity under α∗

s is diminished compared to that in the case
of MO. Therefore, we state that the proposed compensation pricing method is more
beneficial for a market aiming at maximizing profit. However, to a certain extent, this
also implies the inefficiency of a monopoly market.

7 Discussion

7.1 Market equilibrium

7.1.1 Model parameters

The model parameters A and B are critical in establishing a reliable ME model for
ridesplitting market analysis. Note that A and B are the exogenous parameters of the
expected detour time and waiting time estimation models. We apply the method de-
scribed in Appendix A with some approximations to calculate them for a synthesized
market. It is worth mentioning that an appropriate calibration procedure for A and B
using the real data of experienced waiting and detour times is required (part of ongo-
ing research). Besides, other possibilities of calibrating these parameters with a traffic
simulation model are also presented in Fig. 11 (for cases of absence of operational
data).

7.1.2 Fleet deployment

In the ME model, we assume the expected detour time among different OD pairs to be
proportional to the direct trip time of the corresponding OD. However, the situation is
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more complicated in practice (for example, it should also relate to how the passenger
demand is distributed over the network) and requires further investigation through
either empirical experiment or analytical derivation. Also, the expected waiting time
model only accounts for the spatial difference of vehicle allocations and the potential
effect of demand on supply attraction. A more well-designed model is required to
fit the spatial difference and the temporal elasticity of the ridesplitting supply and
demand. Further, as discussed in Fagnant and Kockelman (2018), fleet operations are
also a vital factor to the system profitability and with significant consequences on
customer experience. The ME model demonstrates that the fleet deployment strategy
should also somehow affect the distribution of ridesplitting demand in the long-term
operation by influencing the detour and waiting times. Thus, this is rather a complex
topic that requires more effort to parse.

Apart from the further analytical modeling improvements in the ME model, an-
other reliable solution to better explore an optimal deployment strategy is integrating
the proposed modeling framework into a traffic simulation platform for experimental
implementation. Modeling the ridesplitting market with a dynamic traffic simulator
provides the opportunity to model individual vehicles with opportunities to imple-
ment fleet deployment strategies and have realistic service attributes of waiting and
detour times at the expense of higher computational effort.

7.1.3 Simulation integration

The ME model approximates the service attributes or more indirectly performs the
mode choice of ridesplitting services analytically. However, the mode choice step in
a ridesplitting simulation platform is somewhat computationally expensive, requiring
equilibrium/convergence to get a specific set of service attributes for any change in
exogenous variables (Liu et al., 2019). Integrating a ME model in a ridesplitting sim-
ulation platform can help remove the required computational effort for mode choice.
In return, the ME model approximation can also be further improved by a feedback
calibration loop of its model parameters, based on the experienced service attributes
from the simulation (Fig. 11), as suggested in section Section 7.1.1.

7.2 Subsidy schemes based on utility-based compensation pricing

7.2.1 Subsidy schemes

Agatz et al. (2012) suggested that, in order to improve the density of ridesplitting rid-
ers, local governments need to subsidize ridesplitting initiatives. Utility-based com-
pensation pricing methods provide opportunities to improve the effectiveness of such
subsidy schemes. Ridesplitting services, by their nature, cannot promise equity in
perceived trip LoS among different passengers and may have negative impacts due to
uncertainty (Guan et al., 2019a). Subsidies provided through utility-based compensa-
tion pricing can help improve equity and average utilities significantly (as shown in
Fig. 9 & Fig. 10). In addition, the improvement in average utilities also attracts more
passenger demand contributing to a higher mode share of the service. Fig. 12 depicts



30 Q.L. Lu et al.

Exogenous variables
(fare, fleet size, 

demand)

Market 
equilibrium 

model

DTA simulation

ME model 
parameters 

(A & B)

Trip attributes 
validation

Mode choice 
(requests)

Waiting and 
detour times

Not validated

Waiting and 
detour times

Simulation based 
service outputs

Validated

ME model 
calibration

Start

End

Fig. 11 Flow chart for integrating market equilibrium with DTA simulation

the relation between profit, compensation, and attracted demand for two different
situations: (i) the start-up phase of operation, when both operator and government
aim to promote the ridesplitting services (assuming 40% people are exposed to the
service); (ii) the mature phase of operation when the operator wants to maintain op-
eration afloat and the government intends to promote the service.
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7.2.2 Demand management

Ridesplitting services require critical mass/density of passengers for sustainable oper-
ations (Furuhata et al., 2013). From Fig. 12, we can see that, at both the start-up stage
and the mature stage, the operator can perform demand management efficiently un-
der the proposed pricing method by implementing different compensation strategies.
On the other hand, the government can also manage both the ridesplitting demand
and road travel demand by adjusting the subsidy scheme. For example, if the gov-
ernment subsidizes an amount of π to the service operator (assuming the subsidies
are invested into compensations), the ridesplitting demand will increase by ∆Q. On
the contrary, private vehicles on the road and the demand for public transport will
decrease correspondingly. As such, apart from capitally investing in the construction
and expansion of the road network or public transport, subsidizing ridesplitting ser-
vices could provide a relatively inexpensive way to enhance the efficiency of urban
transportation systems (Agatz et al., 2012).

7.2.3 Dynamic pricing

Obviously, both the distance-based unified pricing and the utility-based compensa-
tion pricing introduced in this paper are not dynamic (i.e., the compensations are
estimated periodically for the trips finished within the interval) due to ME-based
modeling. A realistic implementation of such pricing (e.g., in a DTA simulation)
would require dynamic compensation (i.e., a passenger fare is compensated upon trip
termination). Dynamic compensation pricing can be done, setting α as a dynamic
compensation control variable, and profit, attracted demand and average LoS as con-
trol updating variables. Recall that the prices imposed externally (such as congestion
pricing and road pricing) are not considered in this paper and can have impacts when
the trip fare is determined dynamically because these external prices are always only
valid for a specific part of the network (e.g., city center) within a specific time period
in a day. Consequently, it is appropriate to consider them when extending the pricing
method to be dynamic.

8 Conclusions

This paper focuses on the inequity problem existing among individual trips in the
ridesplitting markets. We construct a network-based market equilibrium model to es-
timate the market responses to the operator’s decision on trip fare and vehicle fleet
size. In this model, the complicated relationships between the decisions and sys-
tem endogenous variables (e.g., ridesplitting demand, waiting time, detour time) in
ridesplitting markets are synthesized into a simultaneous equations system. A Gradi-
ent Descent algorithm is applied to find the monopoly optimum and social optimum
under the distance-based unified pricing method. The result shows that the MO unit
price is higher than the SO unit price, while the MO fleet size is smaller than the SO
fleet size. We also show that network average detour time and network average wait-
ing time are mainly influenced by the vehicle fleet size and the unit price, respectively,
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while the seats occupancy rate is dependent on both of them. In addition, limitations,
possible extensions, and applications of market equilibrium, i.e., its calibration, us-
age for service mode choice, and integration in the DTA simulation platform, are also
explored.

A utility-based compensation pricing method is developed to improve equity and
average LoS on the basis of the unified pricing method. With this method, trips with a
utility below a threshold (i.e., CRP) are compensated based on a predefined compen-
sated utility function (describing the relationship between the utility before and after
compensation). Note that, LoS and equity of services are represented by the mean of
and variance of trips’ utilities, respectively. The result shows that the improvement
of LoS and equity is more pronounced when the compensation approach is utilized
after the MO solution compared with when it is after the SO solution. In the former
case, we can even see an increase in the maximum profit and welfare by applying this
compensation method with a specific range of CRFs. Further, its implementation in
different domains, i.e., for more effective subsidy schemes and dynamic pricing, is
also discussed.
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A Calibration of model parameters

The estimation accuracy of expected detour time and expected waiting time can significantly affect the
effectiveness of the proposed ridesplitting equilibrium model. Therefore, it is critical to provide plausible
A and B in the detour and waiting time models. Remarkably, A and B would be different for different
markets. Concisely, A and B can capture the particular traits of the market and thus lead to a reliable
market model for relevant analyses.

In this section, we introduce an approximating method to calculate A and B for a market given the
operation data. Suppose that we know the vehicle fleet size N̂, average trip fare r̂, average detour time
ˆ̃t, and average waiting time ŵ from the operation of the market of interest. Assume the probabilities of
choosing ridesplitting are the same for all OD pairs in the network, according to the MNL model, we can
simply get

P̂ =
eV̂rs

µ̂ + eV̂rs
(43)
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where V̂rs = βt(t̄d + ˆ̃t)+βwŵ+βr r̂. And µ̂ = ∑ j∈{M−rs} eV̂ j is the sum of the exponential of utilities of
other transportation options.

Recall that the expected waiting time of OD i is estimated by

wi =
BiQθ

i

Ωi
√

Nns −∑ j Q jt j
(44)

Assume the network is homogeneous: (i) the expected waiting time is the same across the network (wi =
ŵ), (ii) the ridesplitting demand is the same for all OD pairs (Qi = Q̂i,Ωi = 1), and (iii) the expected detour
time is the same across the network (t̃i = ˆ̃t). Then, Qi = P̂∑i Di/nz and ∑ j Q jt j = P̂∑ j D j(ˆ̃t+ td

j ), resulting
in

B =
ŵ
√

N̂ns − P̂∑ j D j(ˆ̃t + td
j )

(P̂∑i Di/nz)θ
(45)

On the other hand, recall that the detour time model is given by

t̃i =
Atd

j ∑ j Q jtd
j

t̄dN ∑ j Q j
(46)

Similarly, we approximate td
j ≈ t̄d ,∑ j Q jtd

j ≈ P̂∑ j D jtd
j ,∑ j Q j ≈ P̂∑ j D j , then we can get,

A =
ˆ̃tN̂ ∑ j D j

∑ j D jtd
j

(47)

Equation (45) and Equation (47) provide a reliable approximated value of B and A, respectively. Note
that sometimes we may still need to tune the result from this calculation procedure to make the model with
the same input conditions (i.e., vehicle fleet size and price) result in a similar operation result.

B Partial derivatives of detour time and waiting time

As shown in Section 4.1 and Section 4.2, the derivatives of the objectives are determined by the derivatives
of detour time and waiting time.

Let t ′i|p and t ′i|N denote the derivatives of ti with respect to p and N, respectively. And let w′
i|p and w′

i|N
denote the derivatives of wi with respect to p and N, respectively. Recall that t̃i = Ai ∑ j Q jtd

j /(N ∑ j Q j),
and since ti = td

i + t̃i, then t ′i|p = t̃ ′i|p, thus the derivative of ti with respect to p can be calculated as

t ′i|p =
Ai

N

[
1

∑ j Q j
∑

j

∂Q j

∂ p
td

j −
∑ j Q jtd

j

(∑ j Q j)2 ∑
j

∂Q j

∂ p

]
(48)

where
∂Q j

∂ p
= D jPj(1−Pj)(βt t ′j|p +βww′

j|p +βrd j) (49)

It means Equation (48) is a linear combination of t ′i|p and w′
i|p.

On the other hand, since wi = BiQθ
i /(Ωi

√
Nns −∑ j Q jt j), so

w′
i|N =

BiθQθ−1
i

Ωi
√

Nns −∑ j Q jt j

∂Qi

∂ p
−

BiQθ
i

Ω 2
i
√

Nns −∑ j Q jt j

∂Ωi

∂ p
−

BiQθ
i

2Ωi

√
(Nns −∑ j Q jt j)3

∂ ∑ j Q jt j

∂ p
(50)

where Ωi = nz ∑ j∈Zi Q j/(∑k∈Z ∑ j∈Zk
Q j), and

∂Ωi

∂ p
=

nz

∑k∈Z ∑ j∈Zk
Q j

∑
j∈Zi

∂Q j

∂ p
−

nz ∑ j∈Zi Q j

(∑k∈Z ∑ j∈Zk
Q j)2 ∑

k∈Z
∑

j∈Zk

∂Q j

∂ p
(51)
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Thus, Equation (50) is also a linear combination of t ′i|p,w
′
i|p,∀i.

Combining Equation (48) and Equation (50) in terms of different i, we can get a linear equations
system with 2nz unknowns (t ′i|p,w

′
i|p,∀i ∈ Z) and 2nz equations (linear combinations). For a given p and N

(at a specific iteration of the algorithm), this linear equations system is tractable via linear algebra.
Similarly, we can obtain the derivatives with respect to N as below.

t ′i|N =
Ai

N ∑ j Q j
∑

j

∂Q j

∂N
td

j −
Ai ∑ j Q jtd

j

(N ∑ j Q j)2 (∑
j

Q j +N ∑
j

∂Q j

∂N
) (52)

w′
i|N =

BiθQθ−1
i

Ωi
√

Nns −∑ j Q jt j

∂Qi

∂N
−

BiQθ
i

Ω 2
i
√

Nns −∑ j Q jt j

∂Ωi

∂N
−

BiQθ
i

2Ωi

√
(Nns −∑ j Q jt j)3

(
ns −

∂ ∑ j Q jt j

∂N

)
(53)

where
∂Ωi

∂N
=

nz

∑k∈Z ∑ j∈Zk
Q j

∑
j∈Zi

∂Q j

∂N
−

nz ∑ j∈Zi Q j

(∑k∈Z ∑ j∈Zk
Q j)2 ∑

k∈Z
∑

j∈Zk

∂Q j

∂N
(54)

∂Q j

∂N
= D jPj(1−Pj)(βt t ′j|N +βww′

j|N) (55)

Analogously, the linear equations system consists of Equation (52) and Equation (53) (∀i ∈ Z) can be
solved via linear algebra.

C Derivation for the compensated utility function

By applying the utility-based compensation method, we do compensations for the trips whose utility is
less than a predefined threshold a (a < 0). In this study, we assume the form of the compensated utility
function as

f (x) = l
√
−x+b (56)

with following mild assumptions.

Assumption 5 f (x) is continuous and smooth on (a,a), such that: 1) f (a) = a; 2) f ′(a) = 1.

Obviously, the function in Equation (56) satisfies the properties described in Section 5. Based on
Assumption 5, we have  f (a) = l

√
−a+b = a (57)

f ′(a) =−1
2

l(−a+b)−
1
2 = 1 (58)

As utilities are negative, i.e., a < 0, f (a) < 0, we then know l < 0 from Equation (57). After some
straightforward work, we arrive at

f (x) =−
√

2ax−a2 (59)

Consequently, let V a denote the utility after compensation, then the full formulation of the compensated
utility function is given by

V a =

{
V if V > a
−
√

2aV −a2 otherwise
(60)
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