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ABSTRACT

Speed limit policies are commonly adopted to manage and control traffic in urban areas due to1

their effectiveness and ease of implementation. Comprehending the complete effect of a speed2

limit policy is complicated and requires modeling and quantified investigations. In this paper, we3

propose a comprehensive simulation-based framework to assess the potential implications of different4

speed limit policies in urban residential areas. The framework models the policy impacts related5

to road safety (risk exposure for pedestrians and driving safety), traffic efficiency (travel time) and6

the environment (fuel consumption, exhaust emissions and noise exposure), using microscopic7

traffic simulation. The evaluations are conducted at various spatial granularity levels, i.e., link level,8

route level, origin-destination (OD) level and network level, and can be further utilized to develop9

relationship models between the key performance indicators (KPIs) and simulation inputs. The10

framework is implemented in an urban area located in the city center of Munich, Germany, and11

multiple speed limit scenarios are designed and compared. The results show that speed limit reduction12

can significantly improve road safety and environmental externalities within the modeled network/area13

with a relatively small cost to traffic efficiency. Such a framework can be used as an economical14

evidence collection method for an evidence-based policymaking approach to speed limit policies.15

The proposed simulation-based framework, implemented in a platform available to interested parties16

upon request, can also be further extended to adapt the assessment of other traffic-related policies.17

Keywords speed limit · road safety · traffic efficiency · environmental externalities · evidence-based policymaking18

1 Introduction19

In most cases, policies should only be enacted after obtaining sufficient supporting evidence from experiments or20

analyses. This is consistent with the concept of evidence-based policymaking. While the appearance of this concept21

can be traced back to the fourteenth century, its absence in the practice of many domains, however, has been long22

lamented (Banks, 2010). Among others, the difficulty in collecting field data hinders the application of evidence-based23

policymaking to transport policy initiatives. Specifically, due to network connectivity and traffic flow propagation, the24

policy piloted in a small region could also impose a considerable impact on the entire transportation system. Therefore, it25

is clearly impractical to collect field data and evidence resulting from different policy scenarios through a trial-and-error26

approach in order to tailor the relevant provisions of the policy. Fortunately, traffic simulation provides an economical27
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alternative to address this challenge. Modifying simulation parameters or embedding corresponding control algorithms1

allow one to produce simulated traffic data for the concerning transport policy environment. The potential impacts2

of different policy scenarios can then be estimated using the simulated data so as to provide evidence to finalize the3

initiative.4

With the increase in car ownership and population density, traffic-related accidents occur more frequently in cities. In5

addition to threatening the safety of traffic participants, non-recurrent congestion events triggered by accidents also6

cause a tremendous loss in social economy (Hallenbeck et al., 2003; Sun et al., 2017). For example, in 2019, the total7

travel delay and congestion cost of the US reached 8.7 billion hours and 190 billion dollars respectively (Lasley, 2021).8

Hence, traffic safety management within the urban area is always a major concern for the local government. To date,9

various proprietary instruments have been proposed to curb the frequency of traffic accidents, which include policies10

(e.g., speed limit regulation), physical measures (e.g., speed humps), economic instruments (e.g., insurance), safety11

education, etc. (Delhaye, 2006). Among others, speed limit policies are adopted pervasively given their effectiveness12

and ease of implementation.13

Traffic speed is recognized as the main factor determining the frequency and severity of traffic accidents within urban14

areas. To be specific, higher average speeds and greater speed variances tend to produce more accidents and fatalities15

(Renski et al., 1999; De Pauw et al., 2014; Vadeby and Forsman, 2018). Speed limit reduction, as a policy instrument16

designed to reduce exposure to the risk of accidents, is capable of reducing average speed and homogenizing the traffic17

flow (Di Costanzo et al., 2020). Apart from improving road safety, speed limit reduction also imposes an influence18

on traffic efficiency and environmental externalities. In terms of traffic efficiency, on the one hand, it can promote the19

alleviation of traffic congestion and homogenization of traffic flow. On the other hand, it also slows down the vehicles20

on the enforced roads. It means that the effect on traffic efficiency is not straightforward and could be case-dependent.21

Moreover, the implementation of speed limits also plays an important role in route choice behaviors (Madireddy et al.,22

2011; Nitzsche and Tscharaktschiew, 2013). Yet, how the new distribution of vehicles across different routes affects23

the origin-destination (OD) travel time (i.e., the effect on traffic efficiency at a more macroscopic level) is also still24

unclear. In terms of environmental externalities, here we refer to fuel consumption, exhaust emissions, and traffic25

noise. Intuitively, one can expect reductions in these figures in low-speed-limit situations considering that frequent26

accelerations/decelerations (the main contributor to the three figures) can be mitigated (Madireddy et al., 2011; Grumert27

et al., 2015). However, if traffic efficiency is significantly undermined by speed limit reduction, it is possible that the28

delay increase counteracts the benefits gained.29

Considering the ambiguous impact of speed limits on the three aforementioned aspects, this paper aims to propose30

a practical simulation-based framework to assess the potential implications of speed limit policies systemically. In31

particular, the policy will be evaluated from the perspective of road safety, traffic efficiency, and environmental32

externalities. To this end, multiple key performance indicators (KPIs) are modeled and embedded to quantify the33

impacts at different aggregation levels (i.e., link level, route level, OD level, and network level), striving for a complete34

measurement. Such a framework can be used as an economical evidence collection method for an evidence-based35

policymaking approach to speed limit policies. Furthermore, to validate the present framework, a case study is36

conducted in a residential area within the city center of Munich, Germany. Numerous scenarios with different speed37

limit regulations and driver compliance levels are designed and compared. It is worth mentioning that, the impact of38

speed limits on an urban residential area is also a scope left for exploration in the existing literature.39

The remainder of the paper is structured as follows. Section 2 summarizes the related literature. In Section 3, the40

evaluation framework for speed limit policies is presented. In Section 4, methods for measuring road safety, traffic41

efficiency, and environmental impacts are introduced sequentially. Section 5 describes the experimental design in detail,42

including the introduction to the study area, experiment scenarios design, and calibration procedure. In Section 6, the43

experiment results are systematically analyzed at different levels and angles. Section 7 discusses the limitations of this44

paper and future works. Finally, conclusions are drawn in Section 8.45

2 Related literature46

This section reviews the literature on (1) the implications of speed limits on road safety, traffic efficiency, and the47

environment, (2) the area-wise influence of speed limits, particularly on urban residential areas, and (3) speed limit48

policy evaluation via simulation.49

2.1 Effects on road safety, traffic efficiency, and the environment50

Many studies have been conducted to quantitatively evaluate the effects of speed limit implementation from different51

perspectives (namely, road safety, traffic efficiency, and the environment). Some mainly focused on one of the three52
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aspects. For example, Makarewicz and Kokowski (2007) and Lan and Cai (2021) studied the impact of speed control1

on road traffic noise and uncovered the significance of traffic speed in the prediction of traffic noise emission. Renski2

et al. (1999) and De Pauw et al. (2014) tried to model the relationship between speed limit and crash rate, as well as3

the number of crashes resulting in serious injuries and fatalities. They found that speed limit reduction is beneficial to4

improving traffic crash numbers. Similarly, Amador and Willis (2014) pointed out that road safety practices associated5

with the enforcement of speed limits are one of the most significant measures pertaining to the reduction of fatalities,6

injury rates, and property damage accidents. Besides, Lu et al. (2011) combined VSL and coordinated ramp metering7

(CRM) to formulate a control strategy to mitigate the impairment of bottleneck flow on traffic efficiency (travel time8

delay). Considering the possibility of bottleneck formation at sag curves due to driving behavior changes, Nezafat9

et al. (2018) applied a simulation-based feedback control algorithm to optimize the speed limits imposed on connected10

vehicles (CVs) to maximize the traffic throughput.11

Further, some have taken into account the broader effect of speed limits from multiple aspects in analyses. Most of them12

are dedicated to developing effective VSL control algorithms and evaluating the effectiveness of the combined model13

that integrates other control components. Also focusing on bottleneck flow, Jo et al. (2012) was proposed to improve14

the safety and travel delay situation under congested traffic scenarios on urban freeways by utilizing a variable speed15

limit (VSL) control algorithm driven by loop data. The classic trade-off between safety benefits and delay in travel time16

has also been accounted for in other speed limit strategy optimization problems like You et al. (2018) and economic17

evaluation models like Hensher (2006). Grumert et al. (2015) incorporated VSL with infrastructure to vehicles (I2V)18

communication technique and autonomous vehicles (AVs) to explore the potential benefits of cooperative individualized19

speed limits to traffic efficiency and the environment. Likewise, Sadat and Celikoglu (2017), Di Costanzo et al. (2020)20

and Tscharaktschiew (2020) also attempted to evaluate speed limits with an objective function comprising both safety21

and environmental impacts. A simulation-based evaluation was carried on in the first two studies, while a site data-based22

analysis and an economic equilibrium model were adopted in the third and the last, respectively. Furthermore, in23

Zhang and Ioannou (2016), VSL was combined with a lane change controller (LCC) to fix the inconsistency issue24

of travel time improvement observed in micro- and macro-scopic models using VSL alone. The combined control25

strategy also rendered consistent results in safety and environmental impact. The complete effect of speed limits has26

also been considered in Soriguera et al. (2013) and van Benthem (2015). They pointed out that the benefits of speed27

limit implementation depend on the relation between the value of traffic externalities and the marginal cost of travel28

times, and evaluating speed limits from a single aspect may lead to incorrect conclusions.29

However, VSL is difficult to implement and requires a specific control algorithm to tune the value according to the30

prediction results of traffic speed and volume. The effectiveness of VSL is thus also highly dependent on the accuracy31

of the embedded prediction component. On the contrary, the (fixed) speed limit policy is easy to implement and32

requires not more than a speed limit sign, which generally can also attain acceptable results. In particular to area-wise33

implementations, the simply fixed speed limit will also not create confusion for the local residents like VSL. Moreover,34

we note that the works mentioned above are either focused on urban motorways or freeways/highways/interstates.35

It follows that most speed limit evaluations in the existing literature are limited to the link level. Few studies have36

investigated the impact of speed limits on urban residential areas from multiple levels.37

2.2 Influence on urban residential areas38

Madireddy et al. (2011) performed a before-after exhaust emissions analysis for the speed limit strategy in an urban39

residential area (Zurenborg) in Antwerp, Belgium. The simulation results showed that as the speed limit reducing from40

50 km/h to 30 km/h, the emissions of CO2 and NOx declined over 26%, and vehicle kilometers traveled (VKT) within41

the study area felled by 14% due to vehicle rerouting. However, it overlooked the difference in safety and efficiency.42

Conversely, Islam and El-Basyouny (2015) applied a full Bayesian before-after evaluation method to measure the safety43

effects of reducing posted speed limit for eight urban residential areas located in the city of Edmonton in Alberta,44

Canada, while efficiency and environmental impact were neglected. Based on an online survey and speed measurements45

at more than 70 road sites in a residential area in Melbourne, Australia, Fildes et al. (2019) concluded that lower speed46

limits would improve the safety and attractiveness of the region, and can receive good community support. As claimed47

by Slavik and Gnap (2020), housing is the main function of residential areas that should have priority over others.48

It means that residents indeed would probably support reducing speed limits and installing speed-limiting devices49

within residential areas to alleviate noise and exhaust emissions. Differently, Nitzsche and Tscharaktschiew (2013)50

proposed a spatial computable general equilibrium model (CGE) to measure the area-wise effect of speed limits from51

an economic perspective, where all metrics were translated into monetary amounts for comparison purposes. While it is52

a comprehensive assessment framework that even considers influential factors apart from transportation, it can only53

provide a rough estimation and is less accurate than microscopic traffic simulations.54
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2.3 Simulation-based speed limit evaluation1

Simulation models can generate detailed operation data of vehicles, such as instantaneous speed, acceleration, and2

emissions, and therefore have been widely employed in the literature. The simulation data can be used to model and3

calculate the metrics and indicators for measuring road safety, traffic efficiency, and environmental impacts. Accordingly,4

it has become an economical alternative to collecting evidence for evidence-based policymaking. For ease of reading,5

Table 1 lists some selected publications and compares their experimental setups, including the implications considered,6

study area, the method used, VSL usage, and the cooperation with other controllers. The publications are ordered based7

on “Study area” and the year of publication. From the table, we can see that the literature efforts that conduct speed8

limit policy investigations employ either of the three methods between site data analyses, economic equilibrium models,9

and simulation-based approaches. However, most studies focused on the effect at the link level, e.g., highways and10

freeways. Few have measured the area-wise effect of speed limits, i.e., network-level evaluation. More importantly,11

none have systematically investigated the complete effect of speed limits on urban residential areas using microscopic12

simulation models. It is worth mentioning that, microscopic models allow data aggregation into multiple spatio-temporal13

granularity levels so as to provide a thorough comparison between different policy scenarios.14

Table 1: Experimental setups of selected literature
Paper Safety Efficiency Environment Study area Model VSL Others

Makarewicz and
Kokowski (2007)

No No Yes General roads Site data No No

Amador and Willis
(2014)

Yes No No General roads Site data No No

Grumert et al. (2015) No Yes Yes Motorways Simulation Yes V2I, AV
Farrag et al. (2020) Yes Yes Yes Expressways Simulation Yes CV
Renski et al. (1999) Yes No No Highways Site data No No
De Pauw et al. (2014) Yes No No Highways Site data No No
Tscharaktschiew
(2020)

No Yes Yes Highways Equilibrium No No

Hensher (2006) Yes Yes No Freeways Site data No No
Lu et al. (2011) No Yes No Freeways Simulation Yes CRM
Jo et al. (2012) Yes Yes No Freeways Simulation Yes No
Soriguera et al. (2013) Yes Yes Yes Freeways Simulation Yes No
van Benthem (2015) Yes Yes Yes Freeways Site data No No
Zhang and Ioannou
(2016)

Yes Yes Yes Freeways Simulation Yes LCC

Sadat and Celikoglu
(2017)

No Yes Yes Freeways Simulation Yes No

Nezafat et al. (2018) No Yes No Freeways Simulation Yes CV
You et al. (2018) Yes Yes No Freeways Simulation Yes No
Di Costanzo et al.
(2020)

No Yes Yes Freeways Simulation Yes No

Nitzsche and Tscharak-
tschiew (2013)

Yes Yes Yes Urban areas Equilibrium No No

Lan and Cai (2021) No No Yes Urban areas Site data No No
Madireddy et al. (2011) No No Yes Residential areas Simulation No No
Islam and El-Basyouny
(2015)

Yes No No Residential areas Site data No No

Fildes et al. (2019) Yes No No Residential areas Site data No No
Slavik and Gnap (2020) No Yes Yes Residential areas Site data No No

3 Simulation-based policy evaluation framework15

Since simulation-based approaches are generally more economical than site data collection and more accurate than16

economic equilibrium models, this study proposes a simulation-based policy evaluation framework that comprehensively17

evaluates the effect of different speed limits for urban residential areas (Figure 1). The systematic evaluation framework18

leverages microscopic traffic models for evaluating speed limit policies with respect to their impact on road safety,19
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traffic efficiency, and the environment at different aggregation levels. Therefore, the three prominent aspects of the1

framework include, (1) traffic modeling, (2) key performance indicators (KPIs) modeling, and (3) policy scenario2

evaluation. Note that while the developed framework is utilized in the current study to evaluate speed limit policies, it3

also acts as a template to establish other similar evidence-based policies.4

Controller
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Speed 
limit
policy

Scenario 1:

Scenario 2:

Scenario 3:

Scenario :

…

Traffic simulator

𝑌 = 𝑓(𝑉𝑆𝐿 ,𝑋𝑆 ,𝑋𝐷 ,𝛽
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KPIs calculation

TTC counts
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𝑣𝑆𝐿 𝑌

𝑋𝑆

𝛽∗,𝑋𝐷
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emissions

Noise exposure

Traffic efficiency

Routledge indicator

Scenarios comparison

Aggregation

Link level

Route level

OD level

Network level

Decision

𝑋𝑆
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Modeling

Figure 1: Simulation-based policy evaluation framework.

The first component consists of the microscopic traffic simulator of the urban network that models detailed vehicle5

driving behaviors with dynamic route choices. For the sake of simulation reliability, both the OD demand matrix (XD)6

and simulator embedded models (β∗) (car-following model, lane-changing model, route choice model, traffic light7

system, etc.) require rigorous calibrations using suitable demand and supply estimation algorithm (discussed in section8

5.3). The traffic simulator, configured with policy scenario (VSL), case network system (XS) and demand patterns, is9

used to simulate the traffic for each scenario. The second component utilizes the fine-grained traffic-related outputs (Y )10

(traffic volume, vehicle speed, acceleration rate, etc.) generated by the microscopic simulation to calculate the policy11

performance indicators or KPIs. These KPIs are proposed from the perspective of road safety, traffic efficiency, and12

environmental impact. Modeling all three aspects allows us to articulate the actual policy impact better and provide13

opportunities to balance policy-related benefits and costs. This component is discussed in more detail under section 4.14

Finally, the third component defines and evaluates different policy scenarios. Scenario definition in the case of speed15

limit policies covers defining different speed levels for corresponding road types in the urban network. Whereas,16

the scenario evaluation part combines and interprets the KPIs at different aggregation levels, which provides a wider17

interpretability toward the possible policy implications. Instead of investigating the effect merely at the link level, we18

consider the KPIs at the link level, route level, OD level, and network level. Different simulated scenarios are later19

compared at each level. Note that the component can also be further extended to model the relationships between20

different inputs (e.g., scenario-related variables, parameters from supply and demand) and the value of interest, e.g., the21

spatial difference of the influence on traffic efficiency (demonstrated in Section 7.1 using regression analysis). Such22

a model can assist in understanding the sensitivity of the given KPI against individual model parameters and allows23

effective designing of new scenarios, especially when all initial scenarios cannot satisfy the requirements. Similarly, the24

aggregated values can be all converted into monetary costs as in Nitzsche and Tscharaktschiew (2013) for modeling25

purposes for understanding the relationship between the inputs and the complete effect. Finally, given a predefined26

objective (e.g., most improvement in pedestrian safety), the comparison evaluations are examined and the most effective27

scenario is chosen to support the speed limit policymaking.28

Theoretically, an additional controller component (dashed box) can be integrated into the proposed framework to29

dynamically supervise the design of scenarios via a feedback connection from the scenario comparison component to30

the scenarios design component (with the controller in-between), especially in the connected and autonomous vehicles31

(CAVs) era where vehicles respect the rules strictly. This, actually, provides an approach to develop a network-wide32

VSL system based on the synthesized effect on the residential area. Yet, this may be inapplicable in the foreseeable33

future when human-driven vehicles are still the major participant in traffic considering that human drivers have difficulty34

in capturing the real-time changes in speed limits. But, it is out of the scope of this paper and is not discussed here.35
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4 Modeling key performance indicators (KPIs)1

This section elaborates on the KPIs for road safety, traffic efficiency and environmental impacts considered in this study2

subsequently.3

4.1 Road safety4

4.1.1 Accident risk exposure for pedestrians5

Several indicators and methods have been developed to measure the accident risk of crossing for pedestrians. Here we6

apply a modified version of the indicator proposed by Routledge et al. (1974a,b) for this purpose. The original indicator7

(named Routledge indicator hereafter) was first conceptualized to enable the method for measuring the accidents per8

road crossing presented in Howarth et al. (1974) to forecast the risk of crossing the given road. However, it cannot9

precisely reflect the situation in dense traffic conditions. As a result, Lassarre et al. (2007) constructs a modified version10

to overcome this drawback and adapt it to the multi-lane road context.11

The Routledge indicator measures the probability of a pedestrian being hit by a vehicle under a certain traffic density12

situation if he/she crosses the road randomly and both the pedestrian and the vehicle take no evasive action (both are13

heedless). It is given by14

rc =
lv + vtc

s
(1)

where lv and v are the average length and speed of vehicles respectively, tc denotes the time needed for pedestrians to15

cross the road, and s is the space headway between every two vehicles. It measures the proportion of road ‘occupied’16

by the traffic as shown in Figure 2. A larger value of rc means there is less space available for pedestrians to cross the17

road and thus is more dangerous.

Figure 2: Routledge indicator.
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Figure 3: Comparison of the Routledge indicator and its modified.
Adapted from Lassarre et al. (2007).

18

Assuming a linear relationship exists between traffic density and speed (Greenshields et al., 1935), one can calculate the19

risk exposure under different traffic speeds based on prior knowledge (about free-flow speed vf , length of vehicles lv,20

and crossing time tc) by21

rc = (1− v

vf
)(1 +

vtc
lv

) (2)

Figure 3 depicts the exposure line under vf = 20 m/s, lv = 5 m, and tc=2 s. Considering when the traffic speed22

v = 0 (i.e., in saturation conditions), the accident risk is relatively low, though it has limited accessibility for crossing.23

Obviously, the Routledge indicator is not representative in nearly saturated situations like this. As such, Lassarre et al.24

(2007) enhanced it by suppressing the term related to the saturation density as Equation (3).25

r′c = (1− v

vf
)
vtc
lv

= kj(1−
v

vf
)vtc = tcq (3)

where kj is the jam density; q is the traffic volume. For a road with nl lanes, assuming the traffic is evenly distributed,26

the equation becomes27

r′c(nl) =
tcq

nl

nl∑
i=1

i (4)
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Figure 3 also shows the line of the modified Routledge indicator, which has become a symmetric parabola. This1

modified Routledge indicator is used to evaluate the crossing risk for pedestrians in this study. Going forward, the2

modified Routledge indicator will be referred to as the Routledge indicator.3

4.1.2 Driving safety of vehicles4

As the group being affected directly by the speed limit policy, the driving safety of vehicles is also involved in the5

evaluation of road safety. Time-to-collision, which is one of the most popular indicators for assessing driving risk,6

is used for this purpose. It measures the time needed for a follower to crash into its leader if the relative speed stays7

unchanged, and is given by8

TTC =

{
xl−xo−lo
vo−vl

if vo > vl
∞ otherwise

(5)

where xl, xo denote the longitudinal location of the leader and the follower respectively, while vl and vo indicate the9

respective speed. lo is the length of the following vehicle. Following the recommendation by Papadoulis et al. (2019)10

and Zhang et al. (2020), we record a situation as dangerous when TTC is not greater than 2 s. The count of records is11

then used to evaluate the driving safety situation.12

4.2 Traffic efficiency13

Travel time is utilized as the metric to measure traffic efficiency under different speed limit scenarios. Understanding14

the influence of speed limit on traffic efficiency is not straightforward, because it is the result of an equilibrium formed15

from several conflict effects. These conflicts can unilaterally determine the final performance and thus need to be16

considered explicitly. Modeling and estimating these conflicts is one reason to use the microscopic traffic simulator.

Reduce 
speed limit

Target links

Harmonize 
the traffic

Route 
choice

Network 
traffic dist.

Travel 
�me

Info. of 
routes

Experience
Reduce free 
flow speed

Traffic 
lights sys.

Figure 4: The influence of the speed limit reduction.

17

Figure 4 illustrates the effect flow of implementing speed limit reduction on some links. Reducing the speed limit18

can harmonize the traffic on target links during congested periods, but also slows down vehicles in free flow and19

median flow situations. The state changes on these links will affect the route choices of vehicles and further change the20

traffic distribution across the network. The traffic assignment finally acts on the traffic efficiency of the whole network21

represented by the disparities in travel time before and after implementing the policy. On the other hand, the updated22

traffic assignment also urges practitioners/engineers to optimize the traffic lights system accordingly to improve the23

network capacity. However, it takes time for a network to reach a new steady state. The route choice behavior of a24

driver is dependent on the latest information on routes, such as travel time and traffic light configurations (coordination25

and adaptation), and experience. In other words, the traffic distribution across the network continues altering until the26

new equilibrium has been established between network supply and route choice.27

Interestingly, this effect flow is similar to the calculation procedure of the dynamic user equilibrium (DUE) (Wardrop,28

1952) via an iterative simulation-based route choice algorithm. But this effect flow reflects the process between29

equilibrium states under two speed limit scenarios, while the iterative simulation-based traffic assignment is for30

distributing routes to vehicles that could produce a user equilibrium. Ideally, the comparison of different policy31

scenarios should be conducted under respective user equilibrium states. Note, the iterative simulation-based traffic32

assignment is used to compute the user equilibrium state for each. However, in reality, a proportion of people (e.g.,33

non-routine drivers) conform to the assumption of dynamic stochastic assignment in regard to route choice behavior34

(i.e., continuously using the navigation to get dynamic user optimum under a given stochastic state of the network). As35
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a result, simulations should be conducted with imperfect DUE assignment, or more specifically, with a combination of1

DUE and dynamic stochastic user assignment. This is portrayed in Section 5.2.2

4.3 Environmental impacts3

4.3.1 Fuel consumption and exhaust emissions4

Transportation is one of the main contributors to energy consumption, climate change and air pollution (Zhao et al.,5

2013), which are in correspondence with fuel consumption, CO2 emission and pollutant emissions (e.g., NOx, PMx),6

respectively. Hence, it is sensible to evaluate the environmental impacts of transportation policies before they are in7

force. A microscopic traffic simulator equipped with a calibrated emission model is useful in predicting the performance8

of such policies (Krajzewicz et al., 2015). In this study, the HBEFA derivation (version 3.1) (Infras, 2010) embedded9

in SUMO is used to estimate vehicular pollutant emission. HBEFA was developed using the basic emission factors10

provided by the well-known PHEM model (a de facto European reference) (Krajzewicz et al., 2015). PHEM computes11

the engine power and engine speed based on the vehicle speed, road gradient, driving resistances and losses in the12

transmission system. The engine power and speed are then used for the calculation of fuel consumption and exhaust13

emissions. However, the computation complexity impedes the application of PHEM to large-scale scenarios. Thus,14

HBEFA simplifies the calculation of the engine power needed to overcome the driving resistance force as a continuous15

function, which is given by16

mE = c0 + c1va+ c2va
2 + c3v + c4v

2 + c5v
3 (6)

where mE is the amount of emission type E, v the instantaneous speed of vehicle, a the instantaneous acceleration rate.17

For a specific vehicle class (emission class), the coefficients set ci(∀i ∈ [1, 2, 3, 4, 5]) are estimated by fitting with the18

corresponding vehicle data extracted from the HBEFA database via linear regression. For instance, the coefficients for19

the gasoline-powered Euro 4 passenger car model are calibrated with the emission data of 208 typical vehicles. This20

approach applies to fuel consumption and all emission types. In other words, they shared the same functional form but21

with different coefficient setups. Therefore, at each simulation step, given the velocity and acceleration of vehicles, fuel22

consumption and emissions can be derived.23

4.3.2 Noise exposure24

People living in residential areas with heavy traffic are susceptible to the noise produced by vehicles. As such, traffic25

noise has become an important consideration of the environmental impact. We apply the Harmonoise model (Nota et al.,26

2005) to estimate the traffic noise. The Harmonoise model calculates the equivalent A-weighted sound pressure levels27

caused by traffic taking into account both the sound power outputted from noise sources and the attenuation during the28

propagation.

Source line

Source line segment

Point source

Propagation path

angle of view

Figure 5: Noise sources and noise propagation, adapted from Nota et al. (2005).
29

Figure 5 shows the simplified schematic graph of this model. In the noise sources modeling, a source line, which
consists of a set of incoherent point sources (point sources are discretized as line segments), is defined based on the
vehicle model and the traffic model. The vehicle model is used to measure the sound power of a single moving vehicle,
wherein three subsources at 0.01 m, 0.30 m and 0.75 m (only for heavy vehicles) above the road surface are explicitly
modeled. Mathematically, for a vehicle category z and a 1/3 octave band k, the strength of a subsource s is calculated as

LW,s,z,k = LWR,s,z,k ⊕ LWT,s,z,k (7)

LWR,s,z,k = αR,z,k + βR,z,klg(
v

vref
) + 10lg(0.8) + Cdir,s,k + Csurf,z,k + Cregion,z,k (8)

LWT,s,z,k = αT,z,k + βT,z,klg(
v − vref
vref

) + 10lg(0.2) + Cdir,s,k + Cdc,z (9)
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where LW is the sound power, LWR and LWT are the rolling and traction noise sound powers, respectively. αR and1

βR are rolling noise coefficients. αT and βT are rolling noise coefficients. v is the vehicle speed, vref is the reference2

speed. Cdir, Csurf , Cregion and Cdc are the correction factors for source directivity, road surface, deviation in the3

sound power output of the regional vehicle fleet, and driving conditions, respectively. We refer the interested reader to4

Nota et al. (2005) for more details of these variables and coefficient values for different vehicle classes.5

The traffic model, on the other hand, combines the outputs from numerous vehicles into the sound power per unit of the
source line, which can be regarded as a statistical description of vehicle models.

L′
W,z,k = LW,z,k + 10lg(

Qzvref
1000Qrefveq,z

) (10)

L′
W,k = 10lg

∑
z

100.1L
′
W,z,k (11)

where veq,k is the equivalent vehicle speed of category k, vref is the reference vehicle speed, Qk is the traffic flow of6

category k, and Qref is the reference traffic flow.7

In propagation modeling, various factors could strengthen or weaken the acoustical energy, such as geometrical8

divergence, and atmospheric absorption. The equivalent sound pressure level for a specific receiver is the aggregated9

result of several propagation paths.10

5 Experimental design11

5.1 Study area and simulation setup12

Maxvorstadt and Schwabing, located in the city center of Munich, is a residential area in the area surrounded by13

the inner ring of Munich (i.e., Bundesstrasse 2R). We implement the case study in this area to validate the proposed14

simulation-based evaluation framework for speed limit policies. Figure 6a shows the map of the study area along with15

the delineation of traffic analysis zones (TAZs). This 5 km × 5 km area is divided into 16 TAZs together with 8 external16

zones around. Figure 6b gives the network structure and indicates the road type of all links with different colors, from17

residential links to urban motorways. The locations of the 11 detectors for traffic measurements are also indicated in18

the figure. We simulate the traffic between 5 am and 10 am, considering the first and last hour as the warm-up and19

dissipation periods, respectively. The calibration process of traffic demand and the models assembled into the simulator20

(driving behavior models, etc.) are discussed in section 5.3.21

(a) Traffic zones (b) Network and road types

Figure 6: The study area.

5.2 Experiment design22

Three speed limit scenarios listed in Table 2 are designed. The speed limits of motorways (pedestrian crossing is not23

allowed) and residential links are kept constant in all scenarios. The Base scenario conforms to the real speed limit24

9



setup, where the speed limits for primary, secondary and tertiary links are 60 km/h, 50 km/h and 40 km/h, respectively.1

The speed limits of these links are set to 40 km/h and 30 km/h, respectively, in the other two scenarios, i.e., SL402

and SL30. The experimental design is partially inspired by Nitzsche and Tscharaktschiew (2013), which found that3

planning a slow zone can enhance social welfare and is deemed to be a promising speed limit policy. By the speed4

limit scenarios devised in this paper, we attempt to make the study area a slow zone. Identical speed limits also add5

homogeneity in network information and facilitate ease in network perception and interactions for all road users.6

Table 2: Scenario design
Scenarios Motorway Primary Secondary Tertiary Residential

Base 80 km/h 60 km/h 50 km/h 40 km/h 30 km/h
SL40 80 km/h 40 km/h 40 km/h 40 km/h 30 km/h
SL30 80 km/h 30 km/h 30 km/h 30 km/h 30 km/h

Considering their convenience and efficiency, microscopic traffic simulators have been extensively applied to estimate7

traffic and evaluate traffic control and management policies. SUMO (Lopez et al., 2018) is used for both the calibration8

task and experiment implementation in this study. Note that for each scenario, final results are derived by averaging9

outputs of 10 simulation replications with different random seeds to cater to the model stochasticity (vehicle arrivals,10

route choice, etc.). The set of random seeds is kept constant among different scenarios, which helps avoid stochastic11

variations among simulations. More importantly, this allows analyzing the effect of reducing speed limits on the12

route choices of vehicles. All simulations are modeled at the microscopic resolution with a 0.1 s step length. A fine13

simulation step can avoid unexpected processing errors and can also improve the accuracy of the computation of fuel14

consumption, exhaust emissions, traffic noise, and the counting of TTC critical moments. Traffic assignment is carried15

via the non-iterative dynamic stochastic user assignment method (i.e., automated routing in SUMO). As a variant of16

dynamic user assignment, it assigns the respective fastest routes to vehicles based on their departure time. Note, edge17

costs (here, travel time) for route cost calculation are periodically updated. This traffic assignment method can be used18

to approximate the DUE with much fewer computation costs if the updating interval is small enough and the proportion19

of vehicles with rerouting capability increases (Ashfaq et al., 2021). However, as mentioned in Section 4.2, in reality,20

traffic assignment is a combination of DUE and dynamic stochastic user assignment due to the existence of non-routine21

drivers in addition to commuters. Thus, the proportion of vehicles with rerouting capacity should be limited to capture22

the dynamic stochastic part. This proportion is regarded as the drivers who refer to routing navigation devices for23

real-time network information during the trip. In addition, as traffic will be redistributed in different scenarios, the24

traffic light system should be optimized correspondingly to guarantee the comparison and analysis are conducted under25

the optimal operating state of each scenario. Therefore, the traffic light coordination and adaptation are respectively26

optimized for different scenarios with the tools1 recommended by SUMO.27

5.3 Network calibration28

Among the modeling steps, model calibration is significantly important to recurrent realistic traffic flows. For the sake29

of reliability, model calibration should be conducted on both supply and demand sides. In this study, the supply model30

is calibrated by estimating the driving behavioral parameters. The Wiedemann-99 model is used for modeling car-31

following behavior. The model parameters are calibrated using the Simultaneous Perturbation Stochastic Approximation32

(SPSA) algorithm (Spall, 1998), fitting upon the data collected at the corridor (a secondary road from Leopoldstrasse to33

Ludwigstrasse, about 2.5 km long) marked in Figure 6b for the period between 17:00 and 18:00. Though a car-following34

model calibrated with the data collected from a secondary road may be biased to the traffic at residential links and35

motorways, the four regimes defined in Wiedemann-99 for distinguishing the interaction of vehicles in different traffic36

states can somehow mitigate the influence (Wiedemann and Reiter, 1992). Wiedemann-99 has also been widely used in37

microscopic traffic simulation for both lane-based and non-lane-based conditions (Anil Chaudhari et al., 2022). Besides,38

as one of the busiest corridors in Munich, that road segment, on the one hand, can often observe frequent interactions39

between vehicles and pedestrians as in the residential links. On the other hand, it is also partially controlled as those40

motorways. Therefore, the calibrated Wiedemann-99 model should be capable of representing the traffic characteristics41

within this study area. Using the maneuver data measured at the same site to calibrate the driving behaviors also further42

strengthens the reliability of simulation results. We refer the interested reader to Dinar (2020) for more details about43

the dataset. Table 3 shows the calibration result of the Wiedemann-99 car-following model. The calibrated model is44

integrated into SUMO for running the following experiments. Regarding lane-changing behavior, a four-layer control45

architecture with distinct motivations for lane change at each layer (i.e., strategic, cooperative, tactical, and regulatory46

motivations) is applied in SUMO. At each simulation step, it determines the vehicle’s decision on lane-changing based47

1See https://sumo.dlr.de/docs/Tools/tls.html for more information about these tools.
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on the current and historical surrounding traffic conditions and adjusts the velocity appropriately to ensure the successful1

execution of the decision. We applied the parameters from Erdmann (2015) in the following experiments.

Table 3: Calibrated values of the Wiedemann-99 model
Variable Value Variable Value

CC0 [m] 1.50 CC5 [m/s] 0.35
CC1 [s] 1.50 CC6 [10−4 rad/s] 11.44
CC2 [m] 4.00 CC7 [m/s2] 0.25
CC3 [s] -8.00 CC8 [m/s2] 4.00
CC4 [m/s] -0.40 CC9 [m/s2] 1.50

2

On the other hand, the demand side is represented by the OD matrix, which contains the demand information of all TAZ3

OD pairs. Note, the study area only represents a portion of the Munich city center, and only a section of the Munich4

inner ring is included. Consequently, the amount of through traffic will increase dramatically in simulations due to: (1)5

All trips from/to external zones can only use the network provided in Figure 6b to reach their destinations, which is6

inconsistent with reality in which some are carried by the paths outside this network (e.g., the entire Munich network);7

(2) Aggregating the TAZs around the study area to create external zones has destroyed the demand structure of the OD8

matrix, which requires amendments in the calibration process. To address this issue, we first apply the SPSA algorithm9

to correct the traffic demand from/to external zones. Utilizing the corrected OD matrix as the prior, we then employ the10

PC-SPSA algorithm (Qurashi et al., 2022) to calibrate the whole OD matrix. Traffic measurements (here, traffic counts)11

are aggregated into a one-hour interval for each detector. The Root Mean Square Normalized (RMSN) error between12

the observed traffic counts and the simulated traffic counts is used to measure the goodness-of-fit, which is given by13

RMSN =

√
N

∑N
i=1(ŷi − yi)2∑N
i=1 yi

(12)

where N is the number of detectors, yi and ŷi are the observed and simulated traffic counts at detector i. We note that14

demand patterns between consecutive time intervals should not be very different. To mitigate the noise introduced by the15

calibration algorithm to the demand pattern, the OD matrices of the considered intervals are corrected simultaneously16

at the step of the SPSA application. Figure 7a compares the calibrated traffic counts and the observed traffic counts17

using a 45-degree plot. Clearly, traffic counts are fitted well, especially at busy links where the impact of traffic is more18

concerning. Figure 7b gives the total demand within each time interval after calibration.
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Figure 7: Calibration results.
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6 Results analysis20

In this section, the effects of speed limits are assessed at four different levels. For calculating the Routledge indicator,21

we assume the average crossing speed is 1.31 m/s as recommended by Onelcin and Alver (2017). Since the lane width22

11



in SUMO is 3.2 m, then the time needed for a pedestrian to cross a lane is tc = 2.44 s. Trucks are not allowed in the1

simulation as the study focuses on the residential network. Assume all vehicles have the size 5 m (length) × 1.8 m2

(width) × 1.5 m (height). Besides, the HBEFA emission model and Harmonoise model have been embedded in SUMO3

so that we can obtain relevant data from the simulation directly. For the HBEFA model, a gasoline-powered Euro 44

passenger car model is used.5

First, by comparing the KPIs under different scenarios at the network level, we start with an overall understanding of the6

impact of speed limits on the concerned aspects. Then, we pay attention to the changes at the link level to investigate7

how the effects distribute and aggregate, followed by the analysis of the influence on route choices. Finally, we analyze8

the changes in OD travel time.9

6.1 Evaluation at the network level10

Note that, the Routledge indicator and noise exposure are link-based metrics. For each scenario, the weighted average11

of the link-based metrics (weighted by the traffic volume of the link within the given hour) is used to measure its12

network-level performance. On the other hand, for other non-link-based metrics: The average travel time of all trips13

is compared; The TTC counts represent the sum of dangerous conflicts between vehicles; For the fuel consumption14

and exhaust emissions, the values are aggregated directly. Figure 8 compares the performance of three scenarios on15

the KPIs. It shows the percentage change of different metrics in SL30 and SL40 compared to the Base scenario. In16

the HBEFA model, the CO2 emission is proportional to the fuel consumption, so they are placed together in the chart.17

As can be seen, all values of the Base scenario are predefined as zero. The center value of the charts is -30%, and the18

outermost circle represents an increase of 20%. There is a 10% gap between every two circles. Clearly, SL30 and SL4019

induce reductions in all metrics other than travel time. It means, reducing speed limits can enhance safety, including20

pedestrian safety and driving safety, and limit environmental externalities, including CO2 emission, toxic exhausts,21

noise exposure and fuel consumption, within the residential area with the cost to traffic efficiency (i.e., travel time).
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Figure 8: Network-wide metrics comparison.

22

More specifically, in all time intervals, the crossing risk exposure in SL40 and SL30 reduce by more than 10 % and 25%,23

respectively. The main trigger for this improvement is that more vehicles select the paths containing motorways when24

the speed limits of links within the residential area reduce. Driving safety has also improved, and the improvement25

is correlated to the traffic demand – a larger demand renders a slighter improvement. The speed limit is the most26

important factor as represented by the difference in the improvement between SL40 and SL30. The implementation27

of a stricter speed limit enforces some vehicles to change route choices and therefore alleviates the traffic congestion28

on busy links, which can, on the other hand, relieve the stop-and-go oscillations. This domino effect finally reduces29

the number of critical TTC moments. Moreover, both SL30 and SL40 lead to similar percentage changes in travel30

time, fuel consumption, noise exposure, and exhaust emissions, in all time intervals, while SL30 results in slightly31

larger improvements. Although a decision module is integrated into the proposed evaluation framework, no specific32

objective is proposed in this paper for the sake of generality. But, policymakers can adopt the framework to attain33

specific objectives. For example, if one places the same weight on all metrics, the smaller the area enclosed by the34

radar map is, the better the scenario. Clearly, SL30 is preferable in this case. Besides, analogous to the evaluation35

conducted in Nitzsche and Tscharaktschiew (2013), one can also translate the metrics into monetary costs such that36

different scenarios can be compared based on the urban economy.37
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Further, considering that not all drivers respect the speed limit regulation in reality, we conduct a sensitivity analysis on1

the compliance level of vehicles to the speed limits. Here the compliance level is evaluated from two aspects: (1) the2

percentage of vehicles that respect the speed limit; (2) the extent to which the desired driving speed of speedy vehicles3

exceeds the speed limit. A speed factor (SF) is defined for the latter aspect. Mathematically, vdesired = SF × SL. The4

SF of speedy vehicles is assumed to follow a truncated normal distribution with a mean selected from [1.1, 1.3, 1.5],5

a standard deviation of 0.1, and lie within (0.5, 2). At the same time, the compliance percentage is selected from6

[0.5, 0.6, 0.7, 0.8, 0.9]. Note, the SF of normal vehicles will be all specified as 1. The sensitivity analysis experiments7

are conducted based on the SL40 scenario network setups for the interval 7 am - 8 am. The performance of different8

compliance level scenarios in travel time, pedestrian risk exposure, vehicle crash risk, and CO2 emission, are compared9

in Figure 9. The results are extracted from 10 simulation replications. Clearly, the average travel time and vehicle crash10

risk are very sensitive to either compliance percentage or SF. To be specific, the average travel time increases with11

compliance percentage and reduces with SF. Whereas, the count of critical TTC moments shows an opposite trend.12

Conversely, pedestrian risk exposure and CO2 emission obtain similar values in these experiments. We clarify that in13

other experiments SF is assumed to follow a normal distribution, i.e., SF ∼ N (1, 0.1), and is truncated in the interval14

(0.2, 2).

0.5 0.6 0.7 0.8 0.9
Compliance percentage

350

360

370

380

390

400

Av
er

ag
e 

tra
ve

l t
im

e 
(s

ec
on

d) SF: 1.1
SF: 1.3
SF: 1.5

0.5 0.6 0.7 0.8 0.9
Compliance percentage

0.134

0.135

0.136

0.137

0.138

0.139

Ro
ut

le
dg

e 
in

di
ca

to
r

0.5 0.6 0.7 0.8 0.9
Compliance percentage

6600

6800

7000

7200

7400

7600

TT
C 

co
un

ts

0.5 0.6 0.7 0.8 0.9
Compliance percentage

3400

3450

3500

3550

3600

To
ta

l C
O

2 e
m

iss
io

n 
(k

g)

Figure 9: Sensitivity analysis on compliance level of drivers to speed limits (based on SL40, 7 am – 8 am).
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6.2 Evaluation at the link level16

Figure 10 shows the distribution of the metrics for all links under different scenarios, while Figure 11 presents that17

for the links with speed limit changed (target links). The metrics include the mean speed of vehicles, the weighted18

Routledge indicator (weighted by the traffic volume), the normalized number of critical TTC moments (normalized by19

the length of the link), and the normalized fuel consumption of traversing vehicles. At the link level, the mean speed of20

vehicles is a more plausible metric to describe traffic efficiency than average travel time, as the average travel time can21

be easily dominated by the length of the link. The distributions are approximated based on a Gaussian kernel.
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Figure 10: Distribution of metrics at the link level (all links).

22

As expected, the vehicle speed will accordingly decrease with the speed limit reduction, as shown in Figure 10a.23

Besides, the speed distribution becomes more and more concentrated from the Base scenario to SL40 to SL30. This, on24

the other hand, implies that the reduction of speed limits can contribute not only to the harmonization of traffic flow25

on the target links, but also to traffic flow over the network. Figure 11a illustrates that, for the target links, the peaks26

of speed distributions are more distant. As the objects being affected directly, they observe a more obvious change27

in traffic state than the others. The decrease in speeds may harm traffic efficiency, but benefit safety at the same time.28

Regarding pedestrian risk exposure, Figure 10b says that reducing speed limits can enhance pedestrian safety in most29

links, though the peak of distribution for the scenario with a stricter speed limit moves to the right. In contrast, for30

the target links, pedestrian safety can be improved and the peak also moves to the left in the scenario with a stricter31

speed limit. We can also observe a similar phenomenon in the distributions of fuel consumption from Figure 10d and32

13
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Figure 11: Distribution of metrics at the link level (links with speed limit changed).

Figure 11d. The distributions of TTC counts have similar shapes in Figure 10c and Figure 11c indicating the effect on1

driving safety is similar for the target links and the whole network. Note, noise intensity is not dependent on the traffic2

volume and cannot be cumulatively calculated (the link with one vehicle passing and the link with one hundred vehicles3

passing may result in similar noise pressure levels), so it is not analyzed at the link level.4

6.3 Influence on route choice5

The area-wise effects of speed limit changes are achieved mainly by influencing the route choices of vehicles as6

explained in Section 4.2. Figure 12 depicts the influence of speed limit on the travel time of trips, where the trips with7

routes changed compared to the Base scenario and those that do not change are separately considered. For the sake of8

simplicity, we denote these two groups as CR and NCR, respectively.
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Figure 12: The influence of speed limit on the trips travel time (CR: change routes; NCR: not change routes).
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The proportion of CR in SL40 is about 39%, and this number increases to 55% in SL30. By comparing the respective10

areas enclosed by the distribution curves of CR and NCR in Figure 12c and Figure 12d, one can reach a similar11

14



conclusion, i.e., stricter speed limits cause more route changes. Moreover, all distributions for NCR skew to the right1

representing that short-distance (short-time) trips are less likely to change their routes. The potential reason is that2

short-distance trips have a lower probability of going through the links with speed limit changed. Hence, the influence3

on this group is weaker than another. The x-axis in Figure 12a and Figure 12b is the percentage difference of the travel4

time in the corresponding scenario compared to that in the Base scenario, and the y-axis is the cumulative probability.5

The distance between the cumulative distribution functions (CDFs) for CR and NCR in Figure 12a and Figure 12b at6

x = 0 reflects that the percentage of trips seeing an increase in travel time in NCR is more than that in CR. Specifically,7

it is about 10% more in SL40 and 15% more in SL30. Referring to the solid black curves in these two plots, the8

proportion of trips encountering an increase of more than 50% in travel time is very small (about 3% in SL40 and %79

in SL30). It means reducing speed limits will not extremely impede the travel of individuals. One may also notice10

that the CDF for CR and the CDF for NCR in SL40 are almost overlapped with each other when x ≥ 20, while this11

phenomenon does not occur in SL30. It follows that, in SL40, the intensity of speed limit influence on CR and NCR are12

similar in the part of trips experiencing an increase of more than 20% in travel time. On the contrary, the influence13

intensity on CR and NCR keeps different in SL30. Furthermore, obviously, more trips are obstructed in SL30 than in14

SL40, as illustrated by the scatters dispersion from the diagonal dashed line in Figure 12d and Figure 12c. Precisely,15

about 80% and 65% of trips are hindered in SL30 and SL40 respectively (which also means some trips even see an16

improvement in travel time, the reason for which is interpreted in the next subsection). In addition, trips with longer17

travel time observing a stronger dispersion implies that long-distance trips may observe more stochasticities in scenarios18

with lower speed limits.19

6.4 Changes of OD travel time20
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Figure 13: ODs whose travel times are influenced most.

It is also important to understand which ODs are affected most and which are affected least such that the policymakers21

can assess the spatial difference of the potential effect of the policy. Figure 13 demonstrates the ODs whose travel22

times are influenced most in the respective scenario. Here we only provide the first 10 ODs that are impeded most (red23

connections) and the first 10 ODs that are improved most (blue connections). The arrow of the connection annotates24

the direction of OD, and the width represents the absolute percentage value (the wider the larger). As mentioned in25

15



the previous subsection, long-distance (long-time) trips are more likely to change their paths to adapt to the posted1

speed limits. The main reasons include: (1) Long-distance trips have more route options; (2) Speed limits are mainly2

posted on the links within the residential area. By counting the number of connections to the external zones, we know3

that the trips from/to the external zones undertake more impairment in travel time. In SL40, there are 4, 6, and 6 red4

connections which relate to the external zones in three intervals, respectively. In SL30, they are 9, 9, and 8. In contrast,5

most blue connections are within the residential area, representing that the implementation of speed limit reduction may6

even improve the traffic efficiency of some ODs located in the residential area. For the trips within the residential area,7

shorter secondary links need to travel. With the change in traffic distribution over the network, these trips thus gain the8

probability of shortening the travel time. Furthermore, the selected ODs vary from different time intervals indicating9

that the influence on OD travel time is time-dependent. Here temporal dynamics only exist in the demand pattern and10

demand level. It is beneficial to identify the factors rendering the spatial difference in OD travel time changes. More11

specifically, we should understand the relationship of the variables from the demand side (e.g., demand pattern) and the12

supply side (e.g., network structure) with the spatial difference. Assuming one wants to have such a scenario that the13

travel time changes of some ODs are below a predefined threshold, if the initial scenarios cannot achieve this objective,14

the estimated relationship model can then be used to tailor the scenario design. This is one potential unit that can be15

included in the modeling component of the scenario comparison module in Figure 1.16

7 Discussion17

This section first introduces a relationship model that can be embedded in the modeling component of the proposed18

evaluation framework. It models the spatial difference of OD travel time changes with features from the demand model,19

supply model and scenario design. Then, the limitation of the risk exposure measurement for pedestrians used in this20

study is discussed and a method to improve it is provided.21

7.1 Understanding the spatial difference of OD travel time changes22

To better understand the factors pertaining to the spatial difference of travel time changes, a regression model can be23

constructed. Features from the supply side mainly include the statistics of objects (i.e., nodes and links) in the network24

and the metrics for measuring its efficiency (e.g., circuity), connectivity (e.g., node degree, average nearest neighbor25

degree, clustering coefficient, alpha index, gamma index), centrality (e.g., degree centrality, betweenness centrality,26

) and complexity (e.g., beta index). It is worth emphasizing that the statistics of target links are explicitly calculated27

considering they are directly influenced by the speed limit scenario. Features of both the origin TAZ subnetwork and28

the destination TAZ subnetwork (denote as GO and GD, respectively) are constructed. Features from the demand29

side mainly include the OD demand, OD distance and the number of routes connecting the OD. More importantly,30

the speed limit scenario that leads to the occurrence of changes is also included in the features set. Each observation31

in the regression model represents one instance of the OD travel time change. As such, theoretically, it generates 1632

(TAZs) ×16 (TAZs) ×3 (intervals) ×2 (scenarios) = 1536 observations. To make the regression model reliable, the33

observations with less than 5 trips demand are discarded. This process finally leads to 40 independent variables and 61234

observations in total. The dependent variable is the OD travel time change, and the independent variables include the35

variables described above.36

Figure 14 presents the distribution of the dependent variable. It approximately follows a Gaussian distribution with37

a zero mean. The skewness and kurtosis of this distribution are -0.64 and 6.28, respectively, which are within the38

respective accepted range recommended by Schminder et al. (2010), i.e., [-2,2] and [-9,9]. So, it is appropriate to apply39

the Original Least Squares (OLS) regression to estimate the relationship.40

The recursive feature elimination (RFE) procedure is used to select significant features based on the p-value (95%41

confidence level). Then, highly correlated variables are empirically considered and removed from the pruned set. The42

coefficients for 16 features that are finally employed are given in Appendix A for the reader’s convenience. Considering43

the study area is about 5 km × 5 km, the coefficient of OD distance, 0.003, is relatively small, as it means a one-km44

longer OD distance may only contribute to a three-second increase in the OD travel time. One potential reason is45

aggregating trips based on the TAZ eliminates the finer OD-dependent changes of individual trips. To this end, one can46

perform a regression on the change of individual travel time to explore a more precise relation between them. Clearly,47

the characteristics of both GO and GD are significant. However, the influence might be different or even contrary. For48

example, the estimated coefficient for the average circuity of GO is -70.619, while the estimated coefficient for that of49

GD is 310.911. Another interesting point is the number of intersections in GD has a negative impact on the increase of50

OD travel time. The reason could be more intersections provide the probability of finely changing the paths to cross51

blocks within the residential area. Furthermore, the speed limit is significant with a coefficient of -0.772, indicating that52

a 10 km/h reduction in speed limit could lead to an increase of about 7.72 s in OD travel time on average.53
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Figure 14: Distribution of OD travel time changes.
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Figure 15: Comparison of true and estimated travel time changes.

Figure 15 demonstrates the difference between the true values and the estimated values by the OLS regression model.1

In Figure 15a, the x-axis is the true value and the y-axis is the estimated value. In Figure 15b, the x-axis is the order2

of observations, while the y-axis is the residual. The location of observations from different scenarios in Figure 15a3

validates the negative coefficient for the speed limit, i.e., the lower the speed limit is the larger the change of travel time4

is obtained. The data points are concentrating on the diagonal line with a relatively similar number of samples on the5

left side and the right side. This is approved by the residual plot in Figure 15b. All residuals are fairly located around6

the y = 0 horizontal line, and the number of points on both sides is not significantly different. However, the residuals of7

SL40 are more compact, implying that the regression model performs better in milder speed limit scenarios.8

Note that, here we just provide an example solution for this problem which should be the baseline method. Whereas,9

one can apply other advanced models to tackle this task for the purpose of attaining the best-fitted result.10

7.2 A statistical model for measuring risk exposure for pedestrians11

Recall that in the evaluation of the risk exposure for pedestrians at the network level, values of the Routledge indicator12

of links are weighted by the traffic volume. Rigorously speaking, the values should be weighted by the number of13

pedestrians. Due to the lack of pedestrian data, we make an approximation by assuming links are equally crowded for14

both pedestrians and vehicles. For those who have pedestrian data, a statistical model is more reliable compared to the15

relatively rough Routledge indicator. Cameron (1982) develops a statistical model to estimate the exposure and accident16

risk for pedestrians, where the scenario with pedestrian priority and with vehicle priority are separately modeled. Here17

we improve it by considering the pedestrian arrival and vehicle arrival simultaneously.18

Let the exposure E be the number of potential accidents occurring in a given period T with stationary pedestrian19

and vehicle arrival rates (λp and λv, respectively). Figure 16 illustrates the potential conflict between a vehicle and a20

pedestrian. The time intervals for pedestrians and vehicles are xp and xv, respectively. The time for a pedestrian to21

cross a lane and the time for a vehicle to pass the cross-section are tp and tv . We assume the arrival of pedestrians (Xp)22

and vehicles (Xv) follow multiple independent Poisson processes. Then the probability density function (PDF) for this23

17



Figure 16: The conflict between a vehicle and a pedestrian.

process is1

fXp,Xv (xp, xv) = λpλve
−λpxp−λvxv (13)

Hence, the probabilities of the n-th pedestrian encountering an accident in different lanes are calculated as shown2

Figure 17.

Lane 1:

Lane 2:

Lane :

… …

Figure 17: Probability of a pedestrian encounters an accident at different lanes.

3

Denote the n-th pedestrian suffers an accident as event An. An = 1 indicates an accident happened, while An = 04

means no accident happened. The probability of An = 1 is5

P (An = 1) =

nl∑
i=1

Pi (14)

Therefore, the expectation (denote as Ex) of the exposure in T is calculated as6

Ex(E) = Ex(An)(λv + λp)T = P (An = 1)(λv + λp)T (15)

The proposed statistical model can improve the evaluation reliability of the risk exposure of crossing. For the one who7

has relevant data and seeks a more accurate estimation, it is preferable and should replace the Routledge indicator in the8

evaluation framework.9

8 Conclusions10

Speed limit policies can render essential and complicated consequences on the traffic flow of an urban network.11

Considering they are widely adopted as a control measure, appropriate tools for comprehensive quantitative assessments12

are urgently needed. However, existing works either focus on their function on the target links (i.e., partially investigating13

its influence from a local perspective), incompletely measure the network-wide effect, or roughly evaluate the impacts14

based on the urban economy.15

In this paper, we develop a systematic simulation-based framework to evaluate speed limit policies. The framework16

accounts for modeling the effects as per road safety (pedestrian risk and driving safety), traffic efficiency (OD travel17

time), and the environment (fuel consumption, exhaust emissions, and noise exposure). It contains a four-level18

comparison system (i.e., network level, link level, route level, and OD level), which makes the evaluation framework19

hierarchical and systematic. The strength of this framework comes from modeling all different aspects, which are20

affected by traffic-related policies, where now different global criterion methods can be adapted to combine effects21

from all the KPIs upon common criteria. Statistical models can be developed between the modeled KPIs and simulation22

parameters, which provide a more detailed understanding of their correlations. These models can then be directly23

utilized for either policymaking or optimizing new policy scenarios. The proposed framework is extendable for the24

18



assessment of any traffic-related policy and to make the evaluation general, no specific objective is imposed, which can1

be easily added as per requirement.2

Using the proposed framework, we perform a comprehensive evaluation of imposing speed limits to a part of the Munich3

city center area (Maxvorstadt and Schwabing). Multiple speed limit scenarios are designed by setting identical lower4

speed limits for all road types (i.e., primary, secondary, and tertiary). The results show that: (i) Speed limit reduction5

can enhance road safety and the environment within the affected network/area with the cost to traffic efficiency (network6

level); (ii) Tightening speed limits can contribute to not only the harmonization of traffic flow of the target links but also7

the traffic flow over the network, represented by the more concentrating distribution for the KPIs (e.g., speed) (link8

level); (iii) Long-time trips are more likely to change the route choice under low-speed limit scenarios. The influence9

intensity of reducing the speed limit on the group changing routes and the group not changing routes are distinctive, and10

the divergence becomes more obvious under stricter speed limits (route level); (iv) The travel between the outer area11

and the residential area suffers more impairment in travel time, while some travels inside the residential area can even12

observe an improvement (OD level). According to the insights into the effect of speed limits found in the Munich case13

study, we recommend the following speed limit policies to reduce the traffic external effects in urban areas.14

(1) Implementation of slow zones in urban areas with high population density. To mitigate the traffic external effects15

around urban residential areas, we recommend piloting slow zones with speed limits set at 30 km/h or lower (e.g., 2516

km/h) on all types of roads within the area. While special speed limits for school zones and work zones have already17

been implemented in Europe (European Commision, 2023) and the USA (FHWA, 2017), the implementation of18

slow zones in high-density urban areas may also yield significant benefits by reducing traffic externalities.19

(2) Enhanced enforcement. Implementing slow zones in a wide variety of road types will require improved compliance20

levels among drivers and assurance of the effectiveness of slow zone settings. Therefore, it is essential to21

enhance enforcement measures with lower tolerances. Mannering (2009) and NHTSA (2020) revealed that drivers’22

perceptions of safe speed are influenced by their expectations of the penalties (even a small amount) incurred for23

exceeding the speed limit. By implementing stricter enforcement practices, including increased monitoring, and24

lower tolerance thresholds (more cases but a small amount each), compliance rates can be improved, leading to25

greater public acceptance of the new policies. This is particularly crucial during the initial stages of implementation.26

The importance of compliance is also illustrated in Figure 9.27

(3) Microscopic simulation adoption. Instead of relying solely on the conventional approach of using the 85th percentile28

speed as the speed limit for a given road, we recommend adopting a microscopic simulation-based evaluation29

method for determining appropriate speed limits. Microscopic simulations provide a comprehensive and area-wide30

analysis of different speed limit scenarios, modeling detailed traffic, safety and emissions metrics and enabling31

policymakers to make informed decisions. To facilitate this process, it is recommended that relevant government32

agencies structure and provide training and resources for adopting microscopic simulation techniques for planning33

and policy-making.34

We also discuss two methods related to the components present in the proposed evaluation framework. First is an35

example unit of the modeling component, where an OLS regression model is estimated for low-speed limit scenarios36

that describe the relationships between change in OD travel times and the features of the demand and supply models.37

The second method is a statistical model to improve the estimation of risk exposure for pedestrians where the problem is38

modeled as multiple independent Poisson processes. The model requires information for vehicle and pedestrian arrival,39

and thus it is not applied in this paper due to the lack of pedestrian data.40

This study is subject to certain limitations that should be taken into consideration. Firstly, it relies on the assumption,41

as discussed in Section 7.2, that both pedestrian and vehicle distributions are evenly spread along the corresponding42

roads. This assumption may oversimplify the real-world distribution patterns, potentially affecting the accuracy of43

the results. Secondly, a Wiedemann-99 model calibrated with the traffic data collected at a secondary road is used44

to simulate driver behaviors within the study area without distinguishing between motorway traffic and interrupted45

traffic (urban traffic with controlled intersections). While our previous study (Dinar, 2020) has demonstrated that the46

calibrated Wiedemann-99 model can effectively reproduce urban traffic, it is advisable to employ distinct calibrated47

driving behavior models for different road types in other cities or areas where relevant data are available. Thirdly, this48

study focuses solely on car traffic within the study area, excluding the presence of trucks. However, it is important to49

acknowledge that in some cities, residential areas (consisting of multiple types of roads) may experience traffic flows50

consisting of both cars and trucks. Given the inherent differences in driving patterns between car and truck drivers, as51

well as variations in vehicle characteristics, the inclusion of trucks could significantly influence the evaluation of traffic52

externalities.53

For future works, it would be beneficial to construct more units for the modeling component to better explore the54

relationships between the inputs and the variables of interest. Meanwhile, another interesting direction is to incorporate55

a controller module to dynamically supervise the development of optimal scenarios by feedback from the scenario56
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evaluation. Accordingly, a network-wide variable speed limit control strategy that focuses on the regional impact for a1

specific objective (could be multi-objective) can be devised. However, this may be only applicable in the era of CAVs2

where vehicles get automated network information hence strictly obeying the traffic rules.3
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Appendix A OLS regression results9

See Table 4.10

Table 4: Evaluation of the regression model
Variables Coefficient Description

Intercept 215.966∗∗ Constant
Speed limit -0.772∗∗∗ The posted speed limit (km/h)

Variables from the demand side

OD demand 0.113 Number of trips
OD distance 0.003∗∗∗ The Haversine distance between OD centroids (m)

Variables from the supply side

# of nodes in GO -0.204∗∗∗ Number of nodes
Average # of streets to a node -49.966∗∗∗
Average circuity of GO -70.619∗∗ Circuity is the total length of links divided by the sum of Euclidean

distances between link endpoints.
C̄ of GO 110.975∗∗∗ Network average clustering coefficient (Clustering coefficient is

the ratio of the number of edges between a node and its neigh-
bors to the maximum number of edges that could possibly exist
between them.)

Average node degree of GD -105.948∗∗∗ Node degree is the number of links connected to the node.
Average length of links of GD -1.009∗∗∗

Average # of streets to a node -30.436∗∗
# of intersections in GD -0.4∗∗

Average circuity of GD 310.911∗∗∗

k̄ of GD 228.391∗∗∗ Mean of all average neighbor degrees in the network (The average
neighborhood degree of a node is the ratio of the sum of the degree
of all neighbor nodes to the degree of itself)

C̄ of GD 302.749∗∗∗ Network average clustering coefficient
ms of GD 0.793∗∗ Number of target links with speed limit
Beta index of GD -52.974∗∗∗ Beta index is the number of links divided by the number of nodes

Model evaluation

# of observations 612
R2 0.259
R2

adj 0.24
F-statistic 13.85

Note: *p<0.1; **p<0.05; ***p<0.01
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