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ABSTRACT1
Understanding the response of a transportation system to disruptive events is significant for evaluat-2
ing the resilience of the system. However, data collection during such events is always challenging,3
and the data volume is insufficient for building a robust model. Transfer learning provides an ef-4
fective solution to this problem. In this study, we propose a floating car data (FCD) driven transfer5
learning framework for predicting the resilience of target transportation systems to similar disrup-6
tive events to the ones that ever occurred in the source systems. The core of the framework is an7
unsupervised pattern extractor that combines the K-Shape clustering and Bayes inference methods8
for extracting resilience patterns from the FCD collected in the source systems during the disrup-9
tion period. The extracted patterns can then be used to assist in the prediction of the resilience of10
the target systems. We examine the effectiveness of the proposed framework by conducting a case11
study under the context of the COVID-19 pandemic, in which the source domain cities include12
Antwerp and Bangkok, and the target domain city is Barcelona. Results show that the extracted13
resilience patterns can improve the prediction performance of transfer learning neural networks14
with less pre-event information and limited data volume.15

16
Keywords: Transportation resilience, transfer learning, floating car data, COVID-1917
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INTRODUCTION1
Large events such as concerts, sports events, pandemics, and inclement weather can affect citi-2
zens’ travel behavior, causing disturbance to transportation systems. For example, under heavy3
rainstorms, the average vehicle speed will reduce due to slippery road surfaces and impaired vis-4
ibility. During the pandemic, the pandemic intervention policies and people’s awareness of self-5
protection led to a reduction in traffic volume on the road network. By leveraging the knowledge of6
transportation system resilience, governments are able to establish more comprehensive recovery7
policies and containment measures, which help build a robust transportation system in the long8
run. Therefore, understanding the resilience of transportation systems under such events to bring9
systems back to their normal state in a timely manner becomes imperative (1).10

Estimating and predicting the resilience of transportation systems has been a challenge11
for researchers for decades. Bruneau et al. (2) proposed a quantitative framework to evaluate12
the seismic resilience of communities, and the associated four characteristics (robustness, redun-13
dancy, resourcefulness, and rapidity) are soon transferred into the field of transportation systems.14
The “4R” framework describes the resilience patterns, including the performance drop phase and15
performance recovery phase, as well as the new state a system reaches. However, evaluating the re-16
silience of a transportation system using these characteristics relies on the complete information on17
the system functionality before, during, and after the event. In addition, the description of coarse-18
grained resilience characteristics of a traffic road network could not provide sufficient support for19
the establishment of preparedness and recovery measures. To provide comprehensive information20
on resilience patterns, collecting appropriate data and developing an effective method to predict21
resilience patterns during the entire disruption period from pre-event data becomes imminent.22

The challenges of predicting resilience patterns are three-fold. First, the data used should23
reflect the fine-grained performance of a transportation system and be able to capture the features of24
the system’s reaction to large events. Second, due to the lack of during and post-event information25
in the target transportation system, predicting a time series with the entire system functionality26
trend requires a proven method to fully leverage the additional information. Third, a transfer27
learning strategy for dealing with the data insufficiency problem is necessary. However, to our28
best knowledge, the research on resilience pattern prediction is still limited, and none of previous29
studies have focused on all three of these issues at once.30

To fill in the aforementioned gaps, we propose a transfer learning framework for predicting31
transportation demand resilience using floating car data (FCD), which utilizes the learned knowl-32
edge and experiences of source cities to facilitate the prediction for target cities. FCD is collected33
by Global Positioning System (GPS)-equipped vehicles, which plays a vital role in traffic data34
mining (3). Compared to traditional methods of collecting traffic data, FCD are provided by var-35
ious types of vehicles in city-wide road network in real-time and is more flexible than fixed road36
sensors and traffic cameras (4), which overcomes some technical and terrain limitations of certain37
areas. In addition, FCD usually contains multi-dimensional information, such as positions, speed,38
time, and traffic volume, which strongly support the research on intelligent transportation systems39
(ITS) (5).40

The proposed framework consists of a resilience pattern extractor and artificial neural net-41
works, which can alleviate the problem of low model performance caused by inconsistent traffic42
volume distribution among different systems/cities and enable effective transfer learning for the43
target domain. The contributions of this study are three-fold:44

1. A transfer learning model is developed to address the transportation demand resilience45



Yang et al. 4

prediction problem in the context of limited available data;1
2. An unsupervised method combining K-shaped clustering and Bayes inference is de-2

signed to extract resilience patterns from FCD;3
3. We conduct case studies on three cities by using the FCD before and after the occurrence4

of the COVID-19 pandemic.5
The rest of the paper is structured as follows. The Related Literature section reviews pre-6

vious research focus on the transportation resilience estimation and prediction as well as transfer7
learning methods in traffic prediction tasks. The Methodology section presents the FCD-driven8
transfer learning framework for transportation demand resilience. The Case Study and Experimen-9
tal Design section introduces the study areas and experimental setups. Then, the Results section10
discusses experiment results. Finally, the Conclusions section draws some conclusions and points11
out limitations and future directions.12

RELATED LITERATURE13
In this section, we first review the studies related to transportation resilience estimation and pre-14
diction. Then, we introduce the transfer learning methods and the applications of transfer learning15
in transportation prediction tasks found in the existing literature.16

For the past decades, a considerable number of research has been conducted to estimate17
the resilience of transportation systems, and various indicators have been selected. For example,18
topological measures based on complex network theory, which can represent the structural prop-19
erties (e.g., connectivity and accessibility) of the network Lu et al. (6), have gained popularity as20
resilience indicators in previous studies (7). On the other hand, traffic-based indicators, such as21
network average travel time (8, 9), average speed (10), and demand served (11), have also been22
adopted to overcome the drawbacks of the topology-based ones.23

In order to observe the trends in resilience patterns, some researchers leveraged the power24
of regression models to approximate the whole time series of the traffic representatives. For in-25
stance, Zhu et al. (12) scrutinized the number of taxi trips and subway ridership in New York City26
before and after the impact of hurricanes and applied a logistic function to model the recovery27
rate. Although the regression models are computationally efficient and can approximate resilience28
patterns, they fell short in capturing the temporal dependencies of these patterns. Mojtahedi et al.29
(13) developed a time-dependent recovery rate regression model based on Cox’s proportional haz-30
ards regression model, focusing on the post-event reconstruction duration. However, their model31
only considered the overall recovery time, i.e., the rapidity of the system, thereby neglecting other32
resilience features (e.g., robustness, resourcefulness, and redundancy). Consequently, it failed to33
elucidate the specific event impacts at various stages.34

On the other hand, predicting event-free scenarios has received increasing attention as it35
can reflect the impact of large events more intuitively. Therefore, causal impact analysis has be-36
come an important approach to the study of transportation system resilience, which is instrumental37
in evaluating the causal effect of a particular intervention on the outcome of an event. Statistical38
time series models have been extensively applied in transportation resilience causal impact anal-39
ysis. Given the high efficiency of the auto-regressive integrated moving average (ARIMA) model40
in stable time series analysis and prediction, Zhu et al. (14) applied the ARIMA model to predict41
the short-term GDP of earthquake-free scenarios by using pre-event time series, particularly focus-42
ing on the post-event macroeconomic recovery ratio. The Bayesian structural time series (BSTS)43
model is another method for inferring causal impact attributed to its capability of integrating mul-44
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tiple regression components and separately estimating their potential contributions. Xiao et al.1
(15) applied BSTS to infer the non-event ridership of public transport and used a regression tree to2
explore the relationship between the resilience of the rail transit system and possible influencing3
factors, such as built environment, socioeconomic disparities, and the COVID-19 cases. Meng et4
al. (16) calculated dynamic time warping (DTW) distance to measure the similarity between the5
smooth historical data and the shocked serial data. They measured the resilience of the ecosystem6
by using disturbance magnitude, recovery strength, and recovery rate.7

However, these models are typically only valid for certain events. Moreover, they are non-8
transferable and can hardly be applied in large-scale scenarios. Recently, deep learning methods9
such as recurrent neural network (RNN), Long Short-Term Memory (LSTM), and temporal con-10
volutional network (TCN) have shown promising results on time series prediction tasks. They11
also offer opportunities to predict the entire duration cycle of resilience patterns directly. For in-12
stance, Wang et al. (17) proposed a bidirectional diffusion graph convolutional layer to predict the13
transportation system resilience patterns under extreme weather. Essien et al. (18) combined deep14
Bi-directional LSTM network and autoencoder to predict urban traffic flow using a traffic dataset,15
as well as event-related tweets and weather datasets. However, training a deep neural network16
is usually time-consuming, and the scarcity of sufficient data always distances researchers from17
applying these approaches. In addition, a challenge for traffic forecasting is insufficient data (19),18
and using past traffic data for a data imputation is always unreliable (20). Therefore, finding a19
transfer learning strategy to utilize inter-region knowledge to improve prediction performance has20
become one of the most popular methods for traffic prediction tasks in recent years.21

The distributions of the traffic data are usually inconsistent among different cities, which22
is the so-called domain shift. Transfer learning aims to improve the performance of the target23
domain model using the knowledge from the pre-trained model of the domain task. Due to the24
great success achieved by the transfer learning method, increasing research has been dedicated to25
alleviating the issues of insufficient data and the inter-city domain shift in traffic prediction tasks.26
Wan et al. (21) pre-trained an LSTM model using traffic data of the UK for traffic prediction and27
transferred the model to predict the traffic of 11 European cities, which outperformed the direct28
training model. Zhang et al. (22) designed a ConvLSTM model by integrating a convolutional29
neural network (CNN) and LSTM to predict the cellular traffic volume of three different datasets.30
In addition, they tested the transfer learning models between different datasets and introduced an31
eigenvector centrality-based clustering method for inter-cell transfer learning. Mallick et al. (23)32
proposed a transfer learning strategy for speed prediction by training the neural network in the33
subgraphs of the highway network, which made the previously proposed state-of-the-art model34
transferable.35

The above literature provides evidence regarding the potential of transfer learning in trans-36
portation resilience prediction tasks. Considering the common existing issues like insufficient37
traffic data and domain shift between different cities’ road networks, the following section intro-38
duces a framework that leverages the cross-city knowledge for transportation resilience patterns39
prediction.40

METHODOLOGY41
In this section, we first describe the FCD-based transfer learning framework designed for trans-42
portation demand resilience prediction. Then, we introduce its components sequentially.43
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Transfer learning framework for transportation system resilience prediction1
System resilience can be quantified by integrating the deviation of system functionality from its2
optimal value (2). The measurement for system functionality should be able to represent the mo-3
bility patterns of the concerned area. Considering that FCD has wide coverage across urban areas,4
the traffic volume of floating cars is used to describe the system functionality in this study. Accord-5
ingly, the traffic volume time series of floating cars are used to monitor the changes in functionality6
over time.7

The proposed transfer learning framework integrates a k-Shape clustering algorithm, a8
Bayes-based pattern extractor, and neural network models, aiming to predict the resilience pat-9
terns of the target domain by using solely the pre-event FCD and the knowledge gained from the10
source domain. Figure 1 presents the overall framework and the interrelations of the components11
assembled.12

It is worth noting that the concerning areas/systems require prior division into numerous13
subsystems in advance, which serve as the unit of analysis in this study. With grid-wise systems14
as an example, each small system can then be characterized by the respective time series of the15
traffic volume of floating cars, such as the entering and leaving flows in various directions. These16
time series will be treated as different observations, recording the development of the functionality17
of these systems. As such, the time series containing the event period can be used to estimate18
their resilience patterns in the face of a certain type of event. Although such traffic volume time19
series vary from city to city, substantial similarities are anticipated among those much smaller20
grids. Moreover, it is plausible to assume that grids exhibiting similar pre-event characteristics21
would manifest comparable resilience patterns in similar events. Here, resilience patterns are de-22
fined as the changing patterns of the traffic volume time series during the life cycle of the event.23
Additionally, we consider multiple cities in transfer learning models, within which the cities with24
during-event data are treated as source cities, otherwise target cities.25

To measure the similarities of different grid systems, we applied the k-Shape time series26
clustering method to cluster the pre-event time series. Note that in this step, the raw grid traffic vol-27
ume time series from different source cities are mixed and inputted to the k-Shape method. Then,28
the clusters identified are used to label the corresponding during-event time series. Namely, the29
resilience patterns of different grid clusters are defined according to their pre-event functionality.30

Pre-event data k-Shape

Clustered
resilience
patterns

Label assignment

Clustered
pre-event

data

Bayes
method

Clustered
average

resilience
patterns

Predicted
resilience
patterns

&

Pre-event data
k-Shape
cluster

matching

Matched 

average

resilience
patterns

&
Predicted
resilience
patterns

: Raw data : Modules:  resulted data & :  Join

Source grid
FCD

Target grid
FCD
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(During-

event data)
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neural networks
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Neural networks

Frozen parameters
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FIGURE 1: Transfer learning framework for transportation demand resilience prediction.
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Given the stochastic nature of FCD, extracting the average resilience pattern for each grid1
cluster is necessary. To this end, we applied the Bayes method for each cluster to infer the posterior2
distribution of the during-event traffic volume time series. Thus, traffic volume distributions at3
every time step can be obtained for the grids belong to the same cluster. We denote the mean values4
of the distributions as the extracted prompt features. The extracted prompt features’ sequence5
represents each cluster’s average resilience pattern.6

As presented in Figure 1, the clustered pre-event time series and their corresponding av-7
erage resilience patterns are joined together and fed into neural networks to predict the actual8
resilience patterns. In this way, the pre-trained models are obtained. For the test set, only pre-9
event data is given. The pre-event data of the test set are first matched to the corresponding cluster10
identified using the source data. Then, by joining the pre-event data and the average resilience11
patterns of the matched cluster, one can obtain the same format of input as those used to train the12
source model. The joined sequences are then fed into the pre-trained neural networks with frozen13
parameters. Each pre-trained neural network is stacked with a multi-layer perceptron (MLP) for14
parameter learning. It follows that the transfer learning model can predict the resilience patterns15
for the target cities with only the pre-event data.16

Time Series Clustering17
We applied time series clustering to categorize the grids with similar pre-event patterns. We denote18
the traffic volume time series dataset of a n-grid city as G = {g1,g2, ...,gn}, with gi indicating the19
time series of grid i. The entire dataset is divided into a pre-event partition P = {p1, p2, ..., pn} and20
a resilience pattern partition R = {r1,r2, ...,rn}.21

We apply the k-Shape algorithm to identify the grids with similar resilience patterns. The22
k-Shape algorithm is a k-means-based clustering method with shape-based distance (SBD) as the23
distance measure. Figure 2 illustrates the application of the k-Shape algorithm in this problem.24
First, the algorithm is implemented on the partition of pre-event time series, P, to categorize the25
grids with similar pre-event patterns. According to the aforementioned assumption, grids show-26
casing similar pre-event patterns tend to manifest comparable resilience patterns when confronted27
with similar events. Consequently, resilience patterns are classified based on the clusters ascer-28
tained from the pre-event data partition. The reader is referred to Paparrizos and Gravano (24) for29
more details about the implementation of the k-Shape algorithm.30

Bayes-Based Shape Extractor31
Assuming that for a resilience pattern cluster c, the number of grids is Nc and the duration of the
resilience phase is d days. The Bayes inference method is implemented to estimate the posterior
distribution for the traffic volume at each time step of the resilience pattern. Denote the vector
of traffic volume of grids in cluster c at time t by ct . Denote distribution parameters by θt . The
Bayesian method is used to infer the posterior distribution as follows:

p(θt | ct) =
p(ct | θt) · p(θt)

p(ct)
∝ p(ct | θt) · p(θt) (1)

where
P(ct | θt) = P

({
c(1)t , . . . ,ct

(Nc)
}
| θt

)
=

N

∏
j=1

P
(

ct
( j) | θt

) (2)
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FIGURE 2: The k-Shape time series clustering for grid floating car data.

For each time step t in cluster c, p(ct |θt) represents the likelihood function, and p(ct) is a1
normalizing constant. p(θt) is the prior distribution for the parameter θt . Here, we apply Gaussian2
distribution as posterior distribution and use uniform priors for µ and σ . In the case of k clusters,3
k · d posterior distributions are estimated. An example of Bayes resilience patterns extraction is4
presented in Figure 3. The average resilience pattern of a cluster of grids will be defined as the5
time series of the mean value of those posterior distributions.6

Neural Networks7
The application of k-Shape clustering and the Bayes method enables the extraction of prior knowl-8
edge about resilience patterns, thus enriching the feature set for the transfer learning data set. To9
acquire deep embedding of the features and accomplish prediction tasks, deep learning models are10
applied to learn the model parameters. This study considers two kinds of deep learning models:11
multi-layer perceptron (MLP) and recurrent neural networks (RNNs). For RNNs, we consider a12
conventional recurrent neural network (RNN) and a long short-term memory (LSTM) network.13

Multi-Layer Perceptron (MLP)14
MLP is a basic type of feed-forward neural network (FNN). The nodes of FNN are connected in15
a directed graph without a circular structure. The inputs of FNN only flow from the input layer16
through hidden layers to the output layer in one direction. In this study, the inputs of the MLP are17
the joined sequences comprising the pre-event time series and the corresponding resilience patterns18
derived by the Bayes method. The outputs are the predicted resilience patterns.19
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Bayes methods
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FIGURE 3: Example of Bayes resilience patterns extraction. Here we mark an example of re-
silience pattern extraction for a single time step. The samples of each time step form a data set.
For each cluster c, the resilience pattern extraction process is repeated d times.
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Recurrent Neural Network (RNN)1
In contrast to FNN, RNNs share parameters across various time steps, enabling the model to handle2
the variable-length sequence. The RNN model processes one input at a time, and for each layer,3
the inputs are not only the features of the current time step but also the hidden features from the4
last time step, thereby enabling the RNN to capture the temporal dependency of the time series.5
In this study, the inputs of the RNN are also the joined sequences comprising the pre-event time6
series and the corresponding Bayes resilience patterns. Only the outputs from the last few layers7
are optimized to predict the resilience patterns.8

Long Short-Term Memory (LSTM)9
Long short-term memory (LSTM) is a variant of RNN, which is designed to solve the gradient10
problem in order to capture more information from the past. In RNN, the outputs can only be11
optimized through hidden features. Once the weights are smaller than zero or larger than one, based12
on the backward propagation through time (BPTT) and the chain rule, the successive derivations13
of the latest outputs can result in their gradients to the previous inputs converging to either zero or14
infinity when predicting for long sequence. Therefore, the previous information is challenging to15
propagate to distant future units. An LSTM unit contains a memory cell, an input gate, a forget gate16
and an output gate. The memory cell is introduced to aggregate the past and current information,17
the flow of which is adjusted by the gate units so that the information can be selectively transmitted18
to the following LSTM units to keep a long-term temporal dependency.19

CASE STUDY20
In this section, we introduce the case study for the following experiments, which are conducted21
in the context of the COVID-19 pandemic. We first analyze the impact of COVID-19 on urban22
transportation systems. Then, we describe the situation of the study areas and the FCD used in the23
experiments.24

The impact of COVID-19 on Transportation25
Unlike general events, the COVID-19 pandemic did not destroy the transportation infrastructure26
directly but affected travel behaviors and limited the travel opportunities of citizens. In order to27
protect the health of citizens and mitigate the economic fallout caused by the pandemic, govern-28
ments of different countries and regions have taken a series of emergency measures. Among them,29
the lockdown of event venues, short-term travel control of citizens, and quarantine policies are30
the most commonly used measures. According to Engle et al. (25), the mobility of the popula-31
tion is sensitive to the government’s stay-at-home announcement, which alters travel behavior and32
restricts citizen mobility, thereby substantially reducing traffic demand over a certain period.33

Under the pandemic control policies, the traffic volumes of many cities showed a sharp34
decline and then gradually recovered as the control measures were relaxed. Although “resilience35
triangles” showed in most of the city road networks, the impact of COVID-19 varied greatly in36
different cities due to their unique topologies and response policies (26). Therefore, learning from37
the experience of other cities and studying how to transfer the knowledge of resilience patterns play38
essential roles. In the following experiments, we applied the proposed method to the grid traffic39
volume FCD from three cities: Antwerp, Bangkok and Barcelona. We used the data of Antwerp40
and Bangkok for source domain model training and the FCD from Barcelona for transfer learning.41
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Study Areas1
Antwerp is the largest city in Belgium, which is located in the Antwerp Province in the Flemish2
region. As presented in Figure 4a, the road network of Antwerp has a radial structure with a3
relatively dense road network in the city center and a sparse road network in the outskirts. In order4
to combat the spread of the COVID-19 virus, Belgium implemented lockdown policies on March5
18, 2020. The lockdown measures affected schools, restaurants, and workplaces across the entire6
nation. The traffic volume decreased sharply under the pandemic intervention measures, and until7
May 4, 2020, as the lockdown measures were gradually eased, some urban amenities were allowed8
to reopen and the traffic volume started to recover.9

Bangkok, situated in the country’s center, is the capital of Thailand. As presented in Fig-10
ure 4b, the road network of Bangkok exhibits a ring structure, with the roads within the ring11
demonstrating a mix of grid and radial layouts. The pandemic intervention measures in Bangkok12
were initiated on January 3, 2020, when the Thai Ministry of Public Health started to screen the13
temperature and issue health declaration cards to travelers. From March 3, 2020, the Thai gov-14
ernment commenced prohibitions on large gatherings and closures of schools and entertainment15
venues.Shortly after the closure, the government imposed a curfew from March 26 to May 17,16
2020, when the entertainment places were allowed to reopen. Because of the timely implementa-17
tion of pandemic intervention policies, the transportation system of the Bangkok road network was18
relatively less affected by the pandemic and showed more resilient patterns.19

Barcelona, the city for the transfer learning experiment in this study, is located on the20
northeast coast of Spain. As presented in Figure 4c, Barcelona has a comprehensive network21
structure that consists mainly of ring and radial roads, and some blocks in the city center have a22
grid structure. The government of Spain implemented lockdown measures since March 14, 202023
and extended the measures until April 26. Following that, the prevention measures began to ease,24
and on May 11, 2020, citizens were incrementally permitted to resume social activities. During25
the pandemic, the traffic volume in Barcelona experienced a sharp decline and then gradually26
recovered at an unstable rate.

(a) ANTWERP network (b) BANGKOK network (c) BARCELONA network

FIGURE 4: Study areas and networks.

27
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Floating Car Data Description1
The grid traffic volume floating car data is provided by HERE (27) and was used for NeurIPS2
Traffic4cast competitions (28). The data from each city is split into two halves: the first half,3
ranging from January 02, 2019, to June 30, 2019, prior to the COVID pandemic, and the second4
half from January 02, 2020, to June 30, 2020, during the first outbreak of the pandemic. Therefore,5
the data contains 180 days of pre-COVID patterns and 181 days during and after the first outbreak6
patterns. As shown in Figure 5, the raw data for our experiment is a (288, 495, 436, 4) tensor for7
one day. The first three dimensions encode the number of 5-min time intervals per day and the8
number of 100m×100m grids for each city, and the four channels encode the traffic volume of four9
different directions of each grid. In our experiment, we merged the time interval into one day to10
avoid multiple seasonality.11

FIGURE 5: Grid floating car data.

EXPERIMENTAL DESIGN12
Data Preprocessing13
Since the spatial partitioning of the raw data is based on image pixels rather than the road network14
structure, grids without roads typically do not contain traffic volume, and the grids with small traffic15
volume exhibit unstable trends in time series. Consequently, data preprocessing was conducted to16
remove the grids where traffic volume was either unavailable or abnormal.17

Data preprocessing involves the following steps: (1) Aggregating the traffic volume into18
one-day intervals; (2) Folding the data into four dimensions (cities, total samples of four direc-19
tions, time steps, traffic volume); (3) setting a threshold to eliminate part of abnormal data, i.e., the20
average traffic volume per day of each grid should be greater than M veh; (4) Running a K-shape21
clustering for each city and further delete the abnormal cluster; (5) After data cleaning, the remain-22
ing time series is normalized by its maximum of the absolute traffic volume and reshaping the data23
for source domain cities to the shape (samples, time steps) and shuffling the data. (6) shuffling the24
data of the target domain city. Note, for both the source domain and target domain, 60% of the25
data are used for training, 20% are used for testing, and the rest 20% for validation.26
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We first pre-trained the neural networks using 180-day pre-pandemic FCD traffic volume1
for the source domain cities to predict the 181-day resilience patterns. Then, the pre-trained models2
were fine-tuned to predict 181-day resilience patterns for the target domain with only 50 days of3
its pre-pandemic data. Therefore, the total input sequence length of the source domain and target4
domain time series are 361 and 231, respectively.5

For 100 m × 100 m grid size, each city contains 495×436 grid cells, and each grid contains6
the traffic volume time series from four different directions, which means that for each city, a7
maximum of 863,280 traffic volume time series can be extracted. The threshold M was set to 108
veh for the first step of data cleaning. After the data preprocessing, a total of 170947 time series9
from three cities were selected for model building and transfer learning.10

Model evaluation11
The architectures of the neural networks are shown in Table 1. We employed the ReLU activation12
function for more effective learning. The initial learning rate is set to 0.001, and we applied the13
step decay schedule with the decay rate of 0.75 per 50 steps. The batch size for all models is taken14
as 64.15

Initially, we applied a Bayes patterns extractor to generate the average resilience patterns16
for each cluster, the sequence length of which is 181. Therefore, the input sequence length of17
each neural network is the sum of the pre-pandemic sequence length and the average resilience18
patterns length, which is 361. To demonstrate the effectiveness of the proposed Bayes resilience19
patterns extractor, we performed an ablation experiment, i.e., comparing the case with and without20
the extractor. Without the extractor, the average resilience patterns in Figure 3 are unable to be21
extracted, and therefore we directly fed the pre-pandemic sequence into the neural network with22
the same architecture as our proposed model. For each RNN, we added a feed-forward network as23
the prediction head to generate the output. For transfer learning, the parameters of all models were24
frozen, and their outputs were fed into a feed-forward neural network for fine-tuning.25
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TABLE 1: Model architecture

Model # Layers Hidden Size RNN Prediction Head Input Length Output Length

Bayes+MLP 3

Layer 1 = 256

Layer 2 = 128

Layer 3 = 181

361 181

Bayes+RNN

Bayes+LSTM

Bayes+BiLSTM

3

Layer 1 = 16

Layer 2 = 16

Layer 3 = 16

Layer 1 = 256

Layer 2 = 128

Layer 3 = 1

361 181

Bayes+MLP 3

Layer 1 = 256

Layer 2 = 128

Layer 3 = 181

180 181

RNN

LSTM

BiLSTM

3

Layer 1 = 16

Layer 2 = 16

Layer 3 = 16

Layer 1 = 256

Layer 2 = 128

Layer 3 = 1

180 181

For model performance evaluation, we employed Mean Absolute Error (MAE), Mean Ab-1
solute Percentage Error (MAPE), and Time Dynamic Warping Distance (DTW) as metrics, which2
are defined as:3

MAE =
1

n× t

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (3)

RMSE =
1
t

√
1
n

n

∑
i=1

(
Yi − Ŷi

)T (Yi − Ŷi
)

(4)

DTW =
1
n

n

∑
i=1

|Wi| (5)

Where Yi refers to the ground truth, Ŷi represents the predictions, n denotes the number of4
samples, t is the total prediction length, and Wi is the warping path length between the ground truth5
and predictions. Both MAE and RMSE measure the difference between prediction and actual daily6
traffic volume at the grid level. Since RMSE squares the difference values, the results of RMSE are7
more sensitive to outliers. DTW measures the difference between the entire predicted and actual8
traffic volume time series at the grid level, which can handle the unequal length and unaligned time9
series. The unit of MAE and RMSE is veh/day, and for DTW, it is veh/predicted length.10

RESULTS11
Macroscopic Traffic Volume Resilience Patterns12
The total traffic volume time series of the three cities are presented in Figure 6, 7, and 8, respec-13
tively. Compared with their pandemic intervention timeline, it can be observed that they have14
different patterns before and during the pandemic.15
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As shown in Figure 6, the trend of traffic volume time series of Antwerp was relatively1
stable before the pandemic. In the first half year of 2019, the values showed a slightly increasing2
trend and remained at the same level in the first three months of 2020. Subsequently, the govern-3
ment of Antwerp implemented pandemic preventive measures in March 2020, leading to a sharp4
decline in traffic flow, reaching its minimum point. It was only half of the pre-pandemic level by5
the end of March and maintained a low level afterward. As the preventive policies were eased in6
early May, the traffic volume gradually recovered with a slightly accelerating trend. By the end of7
June, the overall traffic volume in Antwerp had recovered to its pre-pandemic level.8
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FIGURE 6: ANTWERP traffic volume time series.

Figure 7 shows that the trend of traffic volume in Bangkok was relatively stable before April9
2019, followed by a slight decline. In early 2020, because of the timely prevention measures, the10
traffic volume had a slightly decreasing trend and declined to the minimum point at the beginning11
of April. In March 2020, the curve recovered gradually but failed to reach its original state. The12
traffic volume in Bangkok did not experience a sharp decrease during the pandemic. Instead, it13
exhibited an overall decreasing trend.14
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FIGURE 7: BANGKOK traffic volume time series.
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Figure 8 shows the traffic volume patterns in Barcelona. Unlike the previous two cities,1
its traffic volume increased gradually before 2020 and was relatively stable in early 2020. Then2
a plunge showed in the curve due to the implementation of the lockdown policies in March and3
remained at a low level. After the lockdown, the traffic volume trended upward and recovered to4
the pre-pandemic level.5
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FIGURE 8: BARCELONA traffic volume time series.

From the macro level, the overall traffic volume in each of the three cities has distinct trends6
and resilience patterns. However, from a microscopic view, the grids of each city contain various7
patterns, and for different cities, some grids of them may contain the same patterns.8

Results of Source Domain Model9
Average resilience patterns10
We utilize the Elbow method to determine the optimal number of clusters. The Elbow method11
plots the within-cluster sum of squares (WCSS) against the number of clusters. WCSS represents12
the total squared distance between each point and the centroid within its cluster, and the point13
of inflection on the WCSS curve, often referred to as the “elbow”, is selected as the number of14
clusters.
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FIGURE 9: Within-Cluster Sum of Square of different number of clusters.

15



Yang et al. 17

Based on the WCSS curve, the number of clusters can either be set to three or four. Al-1
though more clusters could lead to high inter-cluster similarities, the pre-pandemic time series2
were segmented into four clusters by the K-shape method for extracting more resilience patterns.3
Figure 10 presents each cluster’s clustering centroids of the pre-pandemic time series. To verify4
our assumption presented in Section Methodology that grids exhibiting similar pre-event patterns5
would manifest comparable resilience patterns in the face of similar events, the K-shape method6
was also applied to the entire traffic volume time series, which includes both pre-pandemic and7
during-pandemic time series. The grids within the clusters that were generated based on the en-8
tire time series have high similarity across the entire time series, and the pre-pandemic part of9
these also exhibited high similarities with the clustering centroids generated by using only the pre-10
pandemic time series except Cluster 0. This validates our assumption. According to Paparrizos11
and Gravano (24), the cluster centroid is computed by maximizing the cross-correlation similarity12
between a given sequence and the time series within the cluster. Thus, the cluster centroid intu-13
itively reflects the time series shape within the cluster. Note that the magnitude deviation is caused14
by normalization, and the offset in the time dimension does not affect the clustering results as the15
K-shape method aligned the time series automatically when calculating the shape-based distance16
between time series. Figure 10a and 10b show that the first two clusters comprised the normal-17
ized traffic volume pre-pandemic time series with overall stable trends. The centroid of cluster 018
shows smaller amplitudes and some unstable amplitudes, and the reason is that cluster 0 captured19
more grids containing smaller traffic volumes, which generally exhibit less stable trends, but the20
fluctuations are limited in range. On the other hand, the centroids of the last two clusters each21
exhibit different declining trends at different time steps. In addition, the centroid of each cluster22
shows similar seasonality and amplitudes through time, which means the elements within the same23
cluster have high similarity.24
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FIGURE 10: Clustering centers of pre-pandemic clusters.
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According to the clustering results of the pre-pandemic time series, the resilience patterns1
can likewise be segmented into four clusters. Figure 11 presents the samples of during-pandemic2
time series and the extracted average resilience patterns from all elements in each cluster. Con-3
sistent with pre-pandemic clusters, an apparent bolded trend curve can also be observed among4
the samples of each cluster. The average resilience patterns reflect the possible normalized traffic5
volume with the highest degree of confidence in each cluster. As shown in Figure 11a, the average6
resilience pattern of cluster 0 showed a slightly downward trend in mid-March 2020 and a slow7
upward trend since April 2020. In contrast, the average resilience pattern of cluster 1 (see Figure8
11b) presented a more distinct “resilience triangle” shape. The extracted time series in Figure 11c9
and 11d had an overall downward trend and slight resilience patterns.10
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FIGURE 11: During-pandemic clusters and average resilience patterns.

Results of neural networks11
Table 2 summarizes the performance of different models under different metrics when predicting12
traffic volume resilience patterns at the grid level.13

In the source domain, it is unequivocally demonstrated that the MLP model, underpinned14
by a Bayes patterns extractor (BMLP), exhibits superior performance across all three metrics.15
In contrast, the Bayes patterns extractor-based RNN (BRNN) model performed worst. Both the16
LSTM model and BiLSTM model, equipped with Bayes pattern extractors (BLSTM and BBiL-17
STM, respectively), demonstrated comparable performance to BMLP. For DTW, the performance18
of the BMLP, BLSTM, and BBiLSTM was almost identical, while the performance of BRNN was19
worse. Apparently, the BRNN model failed to capture the similarity of the traffic volume time20
series. For MAE, the BLSTM and BBiLSTM models achieved similar performance to the BMLP21
model, while the MAE of the BRNN model was significantly lower than other models, indicating22
its relatively poor prediction accuracy. Regarding RMSE, the BMLP and BLSTM models had23
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TABLE 2: Source domain ablation experiment

Model & Input features DTW (veh) MAE (veh/day) RMSE (veh/day)
MLP (180) 258.456 17.290 39.888
BMLP (180+181) 260.607 (+0.8%) 17.223 (-0.4%) 40.049 (+0.4%)
RNN (180) 275.614 19.371 44.916
BRNN (180+181) 273.541 (-0.8%) 19.134 (-1.2%) 44.745 (-0.4%)
LSTM (180) 273.553 18.884 44.033
BLSTM (180+181) 262.951 (-3.9%) 17.498 (-7.3%) 40.882 (-7.2%)
BiLSTM (180) 266.648 17.963 42.597
BBiLSTM (180+181) 261.848 (-1.8%) 17.747 (-1.2%) 41.504 (-2.6%)

relatively low values of around 40, significantly lower than the value of the BRNN model. The1
recorded RMSE values show that significant errors less influenced the predictions of the BMLP2
and BLSTM models compared to BiLSTM and BRNN models.3

Moreover, it can be observed that the resilience patterns extracted by the Bayes patterns4
extractor can improve the overall performance of RNN-based models but fail to improve the per-5
formance of MLP. Although in RNN-based models, the improvement of BRNN compared to tra-6
ditional RNN was marginal. In contrast, both BLSTM and BBiLSTM significantly outperformed7
LSTM and BiLSTM across all measured metrics. A possible explanation for this could be that the8
memory capability of RNN for pre-pandemic information is inferior to LSTM and BiLSTM over9
longer prediction lengths.10

It can be noticed that the BMLP model exhibited more robust prediction performance than11
RNN-based models in the source domain. The possible reason could be the cumulative error caused12
by the long prediction length. In RNN-based models, the BLSTM and BiLSTM outperformed the13
BRNN because the gate mechanism can strengthen the ability of the LTSM-based model to capture14
the long-term temporal dependencies, thereby achieving similar performance as the BMLP model.15

Figure 12 presents the performance of the proposed models as well as the Bayes ablated16
models. It can be observed that the predictions of the Bayes-based model are almost consistent17
with the ground truth. As shown in Figure 12a, the BMLP exhibited strong robustness over the18
entire forecasting interval, but a noticeable bias is evident when predicting the peak value for19
the initial month. Additionally, it possessed relatively low precision at the time steps marked by20
substantial changes in trends, which indicates that the BMLP struggled to capture the dependency21
between adjacent time steps but can learn the overall shape of the resilience patterns. On the22
other hand, Figure 12b illustrates that the BRNN performs well in the prediction from January23
to March but fails to predict accurately during April and May when clear frustration presents. It24
implies that the BRNN has limitations in capturing the long-term dependencies of the sequence25
and is not sensitive enough to the changes in the trends of the time series. The BLSTM model was26
relatively robust throughout the entire prediction interval, as displayed in Figure 12c. Compared to27
BMLP, BLSTM performs better in peak values and is also capable of capturing significant changes28
in trends. However, BLSTM is unstable in predicting the valley values of each period in our29
experiment. As shown in Figure 12d, BBiLSTM performs better in predicting peak-to-peak values30
in the first few months. However, for the prediction from mid-March to the end of May, BiLSTM31
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FIGURE 12: The macro level prediction and true values in the source domain.

continuously overestimated the traffic volume.1
To quantify and compare the performance of different models in different experiments for2

the macro-level prediction, we further introduced the mean absolute percentage error (MAPE) as3
the metric. The bar charts of Figure 12 present the MAPE of different neural networks for each4
time step.5

Results of Target Domain Model6
In the target domain, the input was only 50 days of the Barcelona pre-pandemic traffic volume7
time series, and a feedforward neural network was stacked to each pre-trained model for fine-8
tuning. Table 3 lists the prediction performance comparison of different models under different9
metrics at the grid level.10

In general, similar to the results of the source domain models, the BMLP showed the11
strongest robustness across all three metrics, whereas the BRNN delivered the poorest perfor-12
mance. The BLSTM and BBiLSTM exhibited similar performance. The DTW results were con-13
sistent between the target and source domains. The BMLP-based transfer learning model continued14
to exhibit the most prominent performance in capturing the similarity between traffic volume time15
series. BLSTM and BBiLSTM exhibited comparable DTW performances, which were close to16
BMLP. However, the BRNN still performed poorly in learning time series similarity. The MAE17
results show that BLSTM and BMLP achieved high accuracy in our traffic volume prediction task,18
while BBiLSTM and BRNN had approximately 4% lower prediction accuracy. In terms of RMSE,19
BMLP yielded significantly lower errors than other models. Although BLSTM exhibited the high-20
est accuracy in MAE error, BBiLSTM and BRNN models were less affected by significant errors.21
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TABLE 3: Target domain ablation experiment

Model & Input features DTW (veh) MAE (veh/day) RMSE (veh/day)
MLP (50) 319.442 21.679 83.732
BMLP (50+181) 309.585 (-3.1%) 20.458 (-5.6%) 82.508 (-1.5%)
RNN (50) 332.087 22.401 85.213
BRNN (50+181) 317.416 (-4.4%) 21.580 (-3.7%) 84.702 ( -0.6%)
LSTM (50) 333.436 22.745 87.104
BLSTM (50+181) 311.488 (-6.5%) 20.830 (-8.4%) 85.225 (-2.2%)
BiLSTM (50) 330.359 22.547 87.788
BBiLSTM (50+181) 311.215 (-5.8%) 21.501 (-4.6%) 84.558 (-3.7%)
MLPre f (50) 320.902 (+0.5%) 20.938 (-3.4%) 83.296 (-0.5%)
RNNre f (50) 353.696 (+6.5%) 26.297 (+17.4%) 89.271 (+4.8%)
LSTMre f (50) 336.000 (+0.8%) 23.821 (+4.7%) 87.854 (+0.9%)
BiLSTMre f (50) 328.773 (-0.5%) 22.578 (+0.1%) 86.721 (-1.2%)

Compared to the source domain tasks, the performance of the BRNN was closer to other1
models. In the source domain, the performance of BRNN and other models differs by approxi-2
mately 5% in terms of the DTW metric. However, in the transfer learning experiment, the gap had3
reduced to approximately 2-2.5%. Regarding MAE, the performance of BRNN was even closer to4
BBiLSTM and exhibited better performance than in the source domain. With respect to RMSE,5
BRNN’s performance surpassed BLSTM and was close to BBiLSTM. This result suggests that6
although RNN models have a relatively poor ability to capture the similarity of traffic volume time7
series at the micro level, they exhibited good generalization ability in predictive accuracy.8

Moreover, the proposed models showed stronger robustness in transfer learning. Compared9
to the Bayes component ablated models for DTW, BMLP, BRNN, BLSTM, and BBiLSTM models10
performed more robustly on capturing time series similarity by 3.1%, 4.4%, 6.5%, and 5.8%,11
respectively. The accuracy of proposed models also improved by 5.6%, 3.7%, 8.4%, and 4.6% in12
MAE. Moreover, for RMSE, the accuracy of our models increased by 0.6% to 3.7%.13

From a macro perspective, all four models achieved robust prediction performance for14
relatively stable trends but exhibited particular bias in predicting the valleys of the overall resilience15
pattern, as shown in the line charts of Figure 13. Figure 13a illustrates the prediction results of the16
BMLP model in the target domain. It can be observed that the BMLP model delivered a generally17
robust performance, particularly during periods with significant trend changes. Figure 13b shows18
that although the BRNN model could capture the overall trend of the time series, its predictive19
ability for the valleys of the resilience patterns is limited. Compared to the BRNN model, as shown20
in Figure 13c, the BLSTM model better captured the downward trend of the resilience patterns,21
though it overestimated the robustness and resourcefulness of the transportation systems. Figure22
13d shows the prediction results of the BBiLSTM, which showed a more robust performance in23
predicting the traffic volume during the recovery phase of the time series than the BLSTM.24

However, Figure 13 suggests that all models experienced large MAPE when the traffic25
volume was relatively low. Due to the inconsistency of traffic volume distribution between the26
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(c) LSTM model
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FIGURE 13: The macro level prediction and true values in target domain.

source domain cities and Barcelona, as well as data instability arising from the small grid size, the1
models may show subpar prediction performance for the grids and periods characterized by low2
traffic volumes.3

From the ablation experiments, it can be inferred that Bayes pattern extractor-based models4
primarily contributed to the model’s robustness in predicting peak and valley values. Although the5
Bayes component ablated models (MLP, RNN, LSTM, BiLSTM) could learn temporal dependen-6
cies between different patterns, they all continuously overestimated or underestimated the traffic7
volume in predicting the overall city resilience patterns. The reason could be the over-capturing of8
the local unstable traffic trends, which made them fail to express the global traffic volume trends.9
In long-term prediction tasks, the accumulative error also was a limitation for RNN-based mod-10
els (RNN, LSTM, and BiLSTM). However, introducing the Bayes pattern extractor can provide11
global information to the neural networks and make the input grid time series more stable, which12
could enhance the models’ robustness in predicting the overall traffic volume at the macro level.13
On the other hand, as the quality of traffic volume floating car data is highly contingent upon the14
number of vehicles connected, which can increase the instability of data with a small grid size.15
However, the extracted resilience patterns might prevent the models from learning such unstable16
trends. Hence, some models did not show significant improvements at the grid level.17

Effectiveness of Transfer Learning18
The bottom partition of Table 3 shows the performance of transfer learning by comparing the19
neural networks trained directly (MLPre f , RNNre f , LSTMre f , BiLSTMre f ) and trained by transfer20
learning.21



Yang et al. 23

The input of all neural networks was the time series with only a 50-day pre-event traffic1
volume. While transfer learning improved the performance of most models, it led to lower pre-2
dicted performance for the MLP and BiLSTM, which indicates a negative transfer issue. For RNN3
and LSTM, the predicted performance of all metrics was improved by transfer learning, and the4
improvement of RNN was particularly significant, as RNN is less robust and more sensitive to5
data scarcity. In contrast, LSTM benefited only marginally from transfer learning. Additionally,6
Table 3 demonstrates that all neural networks supported by the Bayes resilience patterns extractor7
outperformed both Bayes component ablated models and models trained directly, which evidences8
that the proposed transfer learning strategy not only enhances the robustness of neural networks9
but also mitigates the negative transfer problem.10

CONCLUSIONS11
This study built a transferable model for capturing and predicting transportation demand resilience12
patterns using FCD. The framework integrates an unsupervised resilience patterns extractor and13
different kinds of neural networks. By conducting a case study under the context of the COVID-1914
pandemic, we demonstrated the effectiveness of our model.15

We applied grid traffic volume as model inputs and sought to capture the transportation16
resilience patterns. The proposed framework combines unsupervised machine learning methods17
and supervised deep learning methods. The unsupervised machine learning methods include time18
series clustering and Bayes inference methods. We developed prompt features for the grid-wise19
systems with homogeneous resilience patterns and derived the average resilience patterns as an20
additional input to the neural networks. Additionally, the average resilience patterns enable the21
models to learn the experience from other systems. Unlike the existing literature, in which the22
inputs to models for resilience pattern prediction are mostly the traffic data at the local level or23
only the macro level data, we augmented the feature set by incorporating the extracted resilience24
patterns from different cities, providing macro-level information for the deep learning models.25
More importantly, we explored and analyzed the performance and transferability of the models26
with diverse neural network components.27

Despite the satisfactory performance of our proposed method in the case study, certain lim-28
itations persist. The extracted resilience patterns enabled the proposed method to learn experiences29
from different grids and cities. However, the COVID-19 pandemic lasted for a relatively consistent30
duration globally. Consequently, the effectiveness of the proposed method across time series with31
varying event durations remains unproven. In reality, most events have different duration, and col-32
lecting data with the same event duration requires considerable effort and is not always applicable.33
Besides, the proposed framework relies on the widespread availability of floating car data (FCD),34
but the sparsity of the data or the necessity to quantify system resilience using other indicators35
could lead to more efforts on data collection and exploration of the temporal characteristics of dif-36
ferent indicators. We assumed cities with similar pre-event traffic volume patterns would exhibit37
similar resilience patterns during the pandemic. Therefore, we applied time series clustering to38
capture the similarity between grids. However, the performance of time series clustering depends39
on how similar are the pre-event patterns between different grids and cities. In this study, we only40
used the FCD from two cities for resilience patterns extraction, which could not guarantee that41
each grid from the target city could have the right category to correspond. In addition, due to the42
variability in socioeconomic resources and event response measures among different cities, the re-43
action of citizens from different cities to large events could be different, even if they have similar44
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driving patterns. Therefore, the proposed method should be more predictive within a single coun-1
try or region. Furthermore, this paper only considered the similarity of the data itself but neglected2
the spatial similarity between grids. Hence, introducing spatial features could potentially enhance3
grid clustering and accuracy in resilience pattern extraction.4
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