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Abstract
Understanding the response of a transportation system to disruptive events is significant for evaluating the resilience
of the system. However, data collection during such events is always challenging, and the data volume is insufficient for
building a robust model. Transfer learning provides an effective solution to this problem. In this study, we propose a floating
car data (FCD) driven transfer learning framework for predicting the resilience of target transportation systems to similar
disruptive events to the ones that ever occurred in the source systems. The core of the framework is an unsupervised
pattern extractor that combines the k-Shape clustering and Bayes inference methods for extracting resilience patterns
from the FCD collected in the source systems during the disruption period. The extracted patterns can then be used to
assist in the prediction of the resilience of the target systems. We examine the effectiveness of the proposed framework by
conducting a case study under the context of the COVID-19 pandemic, in which the source domain cities include Antwerp
and Bangkok, and the target domain city is Barcelona. Results show that the extracted resilience patterns can improve
the prediction performance of transfer learning neural networks with less pre-event information and limited data volume.

Introduction

Large events such as concerts, sports events, pandemics, and
inclement weather can affect citizens’ travel behavior, caus-
ing disturbance to transportation systems. For example, under
heavy rainstorms, the average vehicle speed will reduce due
to slippery road surfaces and impaired visibility. During the
pandemic, the intervention policies and people’s awareness
of self-protection led to a reduction in traffic volume on the
road network. By leveraging the knowledge of transportation
system resilience, governments are able to establish more
comprehensive recovery policies and containment measures,
which help build a robust transportation system in the long
run. Therefore, understanding the resilience of transportation
systems under such events to bring systems back to their
normal state in a timely manner becomes imperative (1).

Estimating and predicting the resilience of transportation
systems has been a challenge for researchers for decades.
Bruneau et al. (2) proposed a quantitative framework
to evaluate the seismic resilience of communities, and
the associated four characteristics (robustness, redundancy,
resourcefulness, and rapidity) are soon transferred into
the field of transportation systems. The “4R” framework
describes the resilience patterns, including the performance
drop phase and performance recovery phase, as well
as the new state a system reaches. However, evaluating
the resilience of a transportation system using these
characteristics relies on the complete information on the

system functionality before, during, and after the event.
In addition, the description of coarse-grained resilience
characteristics of a traffic road network could not provide
sufficient support for the establishment of preparedness and
recovery measures. To provide comprehensive information
on resilience patterns, collecting appropriate data and
developing an effective method to predict resilience patterns
during the entire disruption period from pre-event data
becomes imminent.

The challenges of predicting resilience patterns are three-
fold. First, the data used should reflect the fine-grained
performance of a transportation system and be able to capture
the features of the system’s reaction to large events. Second,
due to the lack of during and post-event information in the
target transportation system, predicting a time series with the
entire system functionality trend requires a proven method
to fully leverage the additional information. Third, a transfer
learning strategy for dealing with the data insufficiency
problem is necessary. However, to our best knowledge, the
research on resilience pattern prediction is still limited, and
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none of previous studies have focused on all three of these
issues at once.

To fill in the aforementioned gaps, we propose a transfer
learning framework for predicting transportation demand
resilience using floating car data (FCD), which utilizes
the learned knowledge and experiences of source cities to
facilitate the prediction for target cities. FCD is collected by
Global Positioning System (GPS)-equipped vehicles, which
plays a vital role in traffic data mining (3). Compared
to traditional methods of collecting traffic data, FCD are
provided by various types of vehicles in city-wide road
network in real-time and is more flexible than fixed road
sensors and traffic cameras (4), which overcomes some
technical and terrain limitations of certain areas. In addition,
FCD usually contains multi-dimensional information, such
as positions, speed, time, and traffic volume, which strongly
support the research on intelligent transportation systems
(ITS) (5).

The proposed framework consists of a resilience pattern
extractor and artificial neural networks, which can alleviate
the problem of poor model performance caused by
inconsistent traffic volume distribution among different
systems/cities and enable effective transfer learning for the
target domain. The contributions of this study are three-fold:

1. A transfer learning model is developed to address the
transportation demand resilience prediction problem in
the context of limited available data;

2. An unsupervised method combining k-Shape clus-
tering and Bayes inference is designed to extract
resilience patterns from FCD;

3. We conduct case studies on three cities by using the
FCD before and after the occurrence of the COVID-19
pandemic.

The rest of the paper is structured as follows. The
Related Literature section reviews previous research focus
on the transportation resilience estimation and prediction
as well as transfer learning methods in traffic prediction
tasks. The Methodology section presents the FCD-driven
transfer learning framework for transportation demand
resilience. The Case Study and Experimental Design section
introduces the study areas and experimental setups. Then,
the Results section discusses experiment results. Finally, the
Conclusions section draws some conclusions and points out
limitations and future directions.

Related Literature

In this section, we first review the studies related to
transportation resilience estimation and prediction. Then, we
introduce the transfer learning methods and the applications
of transfer learning in transportation prediction tasks found
in the existing literature.

For the past decades, a considerable number of research
has been conducted to estimate the resilience of transporta-
tion systems, and various indicators have been selected. For
example, topological measures based on complex network
theory, which can represent the structural properties (e.g.,
connectivity and accessibility) of the network (6), have
gained popularity as resilience indicators in previous studies
(7). On the other hand, traffic-based indicators, such as
network average travel time (8, 9), average speed (10), and
demand served (11), have also been adopted to overcome the
drawbacks of the topology-based ones.

In order to observe the trends in resilience patterns,
some researchers leveraged the power of regression models
to approximate the whole time series of the traffic
representatives. For instance, Zhu et al. (12) scrutinized the
number of taxi trips and subway ridership in New York
City before and after the impact of hurricanes and applied
a logistic function to model the recovery rate. Although
the regression models are computationally efficient and can
approximate resilience patterns, they fell short in capturing
the temporal dependencies of these patterns. Mojtahedi et
al. (13) developed a time-dependent recovery rate regression
model based on Cox’s proportional hazards regression model,
focusing on the post-event reconstruction duration. However,
their model only considered the overall recovery time, i.e.,
the rapidity of the system, thereby neglecting other resilience
features (e.g., robustness, resourcefulness, and redundancy).
Consequently, it failed to elucidate the specific event impacts
at various stages.

On the other hand, predicting event-free scenarios has
received increasing attention as it can reflect the impact
of large events more intuitively. Therefore, causal impact
analysis has become an important approach to the study
of transportation system resilience, which is instrumental in
evaluating the causal effect of a particular intervention on the
outcome of an event. Statistical time series models have been
extensively applied in transportation resilience causal impact
analysis. Given the high efficiency of the auto-regressive
integrated moving average (ARIMA) model in stable time
series analysis and prediction, Zhu et al. (14) applied the
ARIMA model to predict the short-term GDP of earthquake-
free scenarios by using pre-event time series, particularly
focusing on the post-event macroeconomic recovery ratio.
The Bayesian structural time series (BSTS) model is
another method for inferring causal impact attributed to its
capability of integrating multiple regression components and
separately estimating their potential contributions. Xiao et
al. (15) applied BSTS to infer the non-event ridership of
public transport and used a regression tree to explore the
relationship between the resilience of the rail transit system
and possible influencing factors, such as built environment,
socioeconomic disparities, and the COVID-19 cases. Meng
et al. (16) calculated dynamic time warping (DTW) distance
to measure the similarity between the smooth historical data
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and the shocked serial data. They measured the resilience
of the ecosystem by using disturbance magnitude, recovery
strength, and recovery rate.

However, these models are typically only valid for certain
events. Moreover, they are non-transferable and can hardly
be applied in large-scale scenarios. Recently, deep learning
methods such as recurrent neural network (RNN), Long
Short-Term Memory (LSTM), and temporal convolutional
network (TCN) have shown promising results on time series
prediction tasks. They also offer opportunities to predict
the entire duration cycle of resilience patterns directly. For
instance, Wang et al. (17) proposed a bidirectional diffusion
graph convolutional layer to predict the transportation system
resilience patterns under extreme weather. Essien et al.
(18) combined deep Bi-directional LSTM network and
autoencoder to predict urban traffic flow using a traffic
dataset, as well as event-related tweets and weather datasets.
However, training a deep neural network is usually time-
consuming, and the scarcity of sufficient data always
distances researchers from applying these approaches. In
addition, a challenge for traffic forecasting is insufficient
data (19), and using past traffic data for a data imputation
is always unreliable (20). Therefore, finding a transfer
learning strategy to utilize inter-region knowledge to improve
prediction performance has become one of the most popular
methods for traffic prediction tasks in recent years.

The distributions of the traffic data are usually inconsistent
among different cities, which is the so-called domain shift.
Transfer learning aims to improve the performance of the
target domain model using the knowledge from the pre-
trained model of the domain task. Due to the great success
achieved by the transfer learning method, increasing research
has been dedicated to alleviating the issues of insufficient
data and the inter-city domain shift in traffic prediction tasks.
Wan et al. (21) pre-trained an LSTM model using traffic
data of the UK for traffic prediction and transferred the
model to predict the traffic of 11 European cities, which
outperformed the direct training model. Zhang et al. (22)
designed a ConvLSTM model by integrating a convolutional
neural network (CNN) and LSTM to predict the cellular
traffic volume of three different datasets. In addition, they
tested the transfer learning models between different datasets
and introduced an eigenvector centrality-based clustering
method for inter-cell transfer learning. Mallick et al. (23)
proposed a transfer learning strategy for speed prediction by
training the neural network in the subgraphs of the highway
network, which made the previously proposed state-of-the-art
model transferable.

The above literature provides evidence regarding the
potential of transfer learning in transportation resilience
prediction tasks. Considering the common existing issues like
insufficient traffic data and domain shift between different
cities’ road networks, the following section introduces a

framework that leverages the cross-city knowledge for
transportation resilience patterns prediction.

Methodology
In this section, we first describe the FCD-based transfer
learning framework designed for transportation demand
resilience prediction. Then, we introduce its components
sequentially.

Transfer learning framework for transportation
system resilience prediction
System resilience can be quantified by integrating the
deviation of system functionality from its optimal value (2).
The measurement for system functionality should be able
to represent the mobility patterns of the concerned area.
Considering that FCD has wide coverage across urban areas,
the traffic volume of floating cars is used to describe the
system functionality in this study. Accordingly, the traffic
volume time series of floating cars are used to monitor the
changes in functionality over time.

The proposed transfer learning framework integrates a k-
Shape clustering algorithm, a Bayes-based pattern extractor,
and neural network models, aiming to predict the resilience
patterns of the target domain by using solely the pre-event
FCD and the knowledge gained from the source domain.
Figure 1 presents the overall framework and the interrelations
of the components assembled.

It is worth noting that the concerning areas/systems require
prior division into numerous subsystems in advance, which
serve as the unit of analysis in this study. With grid-wise
systems as an example, each small system can then be
characterized by the respective time series of the traffic
volume of floating cars, such as the entering and leaving
flows in various directions. These time series will be treated
as different observations, recording the development of the
functionality of these systems. As such, the time series
containing the event period can be used to estimate their
resilience patterns in the face of a certain type of event.
Although such traffic volume time series vary from city
to city, substantial similarities are anticipated among those
much smaller grids. Moreover, it is plausible to assume
that grids exhibiting similar pre-event characteristics would
manifest comparable resilience patterns in similar events.
Here, resilience patterns are defined as the changing patterns
of the traffic volume time series during the life cycle of the
event. Additionally, we consider multiple cities in transfer
learning models, within which the cities with during-event
data are treated as source cities, otherwise target cities.

To measure the similarities of different grid systems, we
applied the k-Shape time series clustering method to cluster
the pre-event time series. Note that in this step, the raw grid
traffic volume time series from different source cities are
mixed and inputted to the k-Shape method. Then, the clusters
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identified are used to label the corresponding during-event
time series. Namely, the resilience patterns of different grid
clusters are defined according to their pre-event functionality.

Given the stochastic nature of FCD, extracting the average
resilience pattern for each grid cluster is necessary. To this
end, we applied the Bayes method for each cluster to infer the
posterior distribution of the during-event traffic volume time
series. Thus, traffic volume distributions at every time step
can be obtained for the grids belong to the same cluster. We
denote the mean values of the distributions as the extracted
prompt features. The extracted prompt features’ sequence
represents each cluster’s average resilience pattern.

As presented in Figure 1, the clustered pre-event time
series and their corresponding average resilience patterns
are joined together and fed into neural networks to predict
the actual resilience patterns. In this way, the pre-trained
models are obtained. For the test set, only pre-event data is
given. The pre-event data of the test set are first matched
to the corresponding cluster identified using the source data.
Then, by joining the pre-event data and the average resilience
patterns of the matched cluster, one can obtain the same
format of input as those used to train the source model.
The joined sequences are then fed into the pre-trained neural
networks with frozen parameters. Each pre-trained neural
network is stacked with a multi-layer perceptron (MLP) for
parameter learning. It follows that the transfer learning model
can predict the resilience patterns for the target cities with
only the pre-event data.

Time Series Clustering

We applied time series clustering to categorize the grids with
similar pre-event patterns. We denote the traffic volume time
series dataset of a n-grid city as G = {g1, g2, ..., gn}, with
gi indicating the time series of grid i. The entire dataset is
divided into a pre-event partition P = {p1, p2, ..., pn} and a
resilience pattern partition R = {r1, r2, ..., rn}.

We apply the k-Shape algorithm to identify the grids with
similar resilience patterns. The k-Shape algorithm is a k-
means-based clustering method with shape-based distance
(SBD) as the distance measure. Figure 2 illustrates the
application of the k-Shape algorithm in this problem. First,
the algorithm is implemented on the partition of pre-event
time series, P , to categorize the grids with similar pre-
event patterns. According to the aforementioned assumption,
grids showcasing similar pre-event patterns tend to manifest
comparable resilience patterns when confronted with similar
events. Consequently, resilience patterns are classified based
on the clusters ascertained from the pre-event data partition.
The reader is referred to Paparrizos and Gravano (24)
for more details about the implementation of the k-Shape
algorithm.

Bayes-Based Shape Extractor
Assuming that for a resilience pattern cluster c, the number of
grids is Nc and the duration of the resilience phase is d days.
The Bayes inference method is implemented to estimate the
posterior distribution for the traffic volume at each time step
of the resilience pattern. Denote the vector of traffic volume
of grids in cluster c at time t by ct. Denote distribution
parameters by θt. The Bayesian method is used to infer the
posterior distribution as follows:

p (θt | ct) =
p (ct | θt) · p(θt)

p (ct)
∝ p (ct | θt) · p(θt) (1)

where

P (ct | θt) = P
({

c
(1)
t , . . . , ct

(Nc)
}
| θt

)
=

N∏
j=1

P
(
ct

(j) | θt
) (2)

For each time step t in cluster c, p(ct|θt) represents the
likelihood function, and p(ct) is a normalizing constant.
p(θt) is the prior distribution for the parameter θt. Here,
we apply Gaussian distribution as posterior distribution and
use uniform priors for µ and σ. In the case of k clusters,
k · d posterior distributions are estimated. An example of
Bayes resilience patterns extraction is presented in Figure 3.
The average resilience pattern of a cluster of grids will be
defined as the time series of the mean value of those posterior
distributions.

Neural Networks
The application of k-Shape clustering and the Bayes method
enables the extraction of prior knowledge about resilience
patterns, thus enriching the feature set for the transfer
learning data set. To acquire deep embedding of the features
and accomplish prediction tasks, deep learning models are
applied to learn the model parameters. This study considers
two kinds of deep learning models: multi-layer perceptron
(MLP) and recurrent neural networks (RNNs). For RNNs, we
consider a conventional recurrent neural network (RNN) and
a long short-term memory (LSTM) network.

Multi-Layer Perceptron (MLP) MLP is a basic type of feed-
forward neural network (FNN). The nodes of FNN are
connected in a directed graph without a circular structure.
The inputs of FNN only flow from the input layer through
hidden layers to the output layer in one direction. In this
study, the inputs of the MLP are the joined sequences
comprising the pre-event time series and the corresponding
resilience patterns derived by the Bayes method. The outputs
are the predicted resilience patterns.

Recurrent Neural Network (RNN) In contrast to FNN,
RNNs share parameters across various time steps, enabling
the model to handle the variable-length sequence. The RNN
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Figure 2. The k-Shape time series clustering for grid floating
car data.

model processes one input at a time, and for each layer,
the inputs are not only the features of the current time step
but also the hidden features from the last time step, thereby
enabling the RNN to capture the temporal dependency of the
time series. In this study, the inputs of the RNN are also the
joined sequences comprising the pre-event time series and
the corresponding Bayes resilience patterns. Only the outputs
from the last few layers are optimized to predict the resilience
patterns.

Long Short-Term Memory (LSTM) Long short-term mem-
ory (LSTM) is a variant of RNN, which is designed to solve
the gradient problem in order to capture more information
from the past. In RNN, the outputs can only be optimized
through hidden features. Once the weights are smaller than
zero or larger than one, based on the backward propagation

through time (BPTT) and the chain rule, the successive
derivations of the latest outputs can result in their gradients
to the previous inputs converging to either zero or infinity
when predicting for long sequence. Therefore, the previous
information is challenging to propagate to distant future units.
An LSTM unit contains a memory cell, an input gate, a forget
gate and an output gate. The memory cell is introduced to
aggregate the past and current information, the flow of which
is adjusted by the gate units so that the information can be
selectively transmitted to the following LSTM units to keep
a long-term temporal dependency.

Case Study

In this section, we introduce the case study for the following
experiments, which are conducted in the context of the
COVID-19 pandemic. We first analyze the impact of COVID-
19 on urban transportation systems. Then, we describe
the situation of the study areas and the FCD used in the
experiments.

The impact of COVID-19 on Transportation

Unlike general events, the COVID-19 pandemic did not
destroy the transportation infrastructure directly but affected
travel behaviors and limited the travel opportunities of
citizens. In order to protect the health of citizens and mitigate
the economic fallout caused by the pandemic, governments
of different countries and regions have taken a series of
emergency measures. Among them, the lockdown of event
venues, short-term travel control of citizens, and quarantine
policies are the most commonly used measures. According
to Engle et al. (25), the mobility of the population is
sensitive to the government’s stay-at-home announcement,
which alters travel behavior and restricts citizen mobility,
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Figure 3. Example of Bayes resilience patterns extraction. Here we mark an example of resilience pattern extraction for a single time
step. The samples of each time step form a data set. For each cluster c, the resilience pattern extraction process is repeated d times.

thereby substantially reducing traffic demand over a certain
period.

Under the pandemic control policies, the traffic volumes
of many cities showed a sharp decline and then gradually
recovered as the control measures were relaxed. Although
“resilience triangles” showed in most of the city road
networks, the impact of COVID-19 varied greatly in different
cities due to their unique topologies and response policies
(26). Therefore, learning from the experience of other cities
and studying how to transfer the knowledge of resilience
patterns play essential roles. In the following experiments, we
applied the proposed method to the grid traffic volume FCD
from three cities: Antwerp, Bangkok and Barcelona. We used
the data of Antwerp and Bangkok for source domain model
training and the FCD from Barcelona for transfer learning.

Study Areas
Antwerp is the largest city in Belgium, which is located in
the Antwerp Province in the Flemish region. As presented
in Figure 4a, the road network of Antwerp has a radial
structure with a relatively dense road network in the

city center and a sparse road network in the outskirts.
In order to combat the spread of the COVID-19 virus,
Belgium implemented lockdown policies on March 18, 2020.
The lockdown measures affected schools, restaurants, and
workplaces across the entire nation. The traffic volume
decreased sharply under the pandemic intervention measures,
and until May 4, 2020, as the lockdown measures were
gradually eased, some urban amenities were allowed to
reopen and the traffic volume started to recover.

Bangkok, situated in the country’s center, is the capital
of Thailand. As presented in Figure 4b, the road network
of Bangkok exhibits a ring structure, with the roads within
the ring demonstrating a mix of grid and radial layouts. The
pandemic intervention measures in Bangkok were initiated
on January 3, 2020, when the Thai Ministry of Public
Health started to screen the temperature and issue health
declaration cards to travelers. From March 3, 2020, the Thai
government commenced prohibitions on large gatherings and
closures of schools and entertainment venues.Shortly after
the closure, the government imposed a curfew from March
26 to May 17, 2020, when the entertainment places were
allowed to reopen. Because of the timely implementation of
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pandemic intervention policies, the transportation system of
the Bangkok road network was relatively less affected by the
pandemic and showed more resilient patterns.

Barcelona, the city for the transfer learning experiment
in this study, is located on the northeast coast of Spain.
As presented in Figure 4c, Barcelona has a comprehensive
network structure that consists mainly of ring and radial
roads, and some blocks in the city center have a grid structure.
The government of Spain implemented lockdown measures
since March 14, 2020 and extended the measures until April
26. Following that, the prevention measures began to ease,
and on May 11, 2020, citizens were incrementally permitted
to resume social activities. During the pandemic, the traffic
volume in Barcelona experienced a sharp decline and then
gradually recovered at an unstable rate.

Floating Car Data Description
The grid traffic volume floating car data is provided by HERE
(27) and was used for NeurIPS Traffic4cast competitions
(28). The data from each city is split into two halves: the
first half, ranging from January 02, 2019, to June 30, 2019,
prior to the COVID pandemic, and the second half from
January 02, 2020, to June 30, 2020, during the first outbreak
of the pandemic. Therefore, the data contains 180 days of
pre-COVID patterns and 181 days during and after the first
outbreak patterns. As shown in Figure 5, the raw data for
our experiment is a (288, 495, 436, 4) tensor for one day.
The first three dimensions encode the number of 5-min time
intervals per day and the number of 100 m × 100 m grids
for each city, and the four channels encode the traffic volume
of four different directions of each grid. In our experiment,
we merged the time interval into one day to avoid multiple
seasonality.

Experimental Design

Data Preprocessing
Since the spatial partitioning of the raw data is based on
image pixels rather than the road network structure, grids
without roads typically do not contain traffic volume, and the
grids with small traffic volume exhibit unstable trends in time
series. Consequently, data preprocessing was conducted to
remove the grids where traffic volume was either unavailable
or abnormal.

Data preprocessing involves the following steps: (1)
Aggregating the traffic volume into one-day intervals; (2)
Folding the data into four dimensions (cities, total samples
of four directions, time steps, traffic volume); (3) setting a
threshold to eliminate part of abnormal data, i.e., the average
traffic volume per day of each grid should be greater than
M veh; (4) Running a K-Shape clustering for each city and
further delete the abnormal cluster; (5) After data cleaning,
the remaining time series is normalized by its maximum of
the absolute traffic volume and reshaping the data for source

domain cities to the shape (samples, time steps) and shuffling
the data. (6) shuffling the data of the target domain city. Note,
for both the source domain and target domain, 60% of the
data are used for training, 20% are used for testing, and the
rest 20% for validation.

We first pre-trained the neural networks using 180-day pre-
pandemic FCD traffic volume for the source domain cities
to predict the 181-day resilience patterns. Then, the pre-
trained models were fine-tuned to predict 181-day resilience
patterns for the target domain with only 50 days of its pre-
pandemic data. Therefore, the total input sequence length of
the source domain and target domain time series are 361 and
231, respectively.

For 100 m × 100 m grid size, each city contains 495× 436
grid cells, and each grid contains the traffic volume time
series from four different directions, which means that for
each city, a maximum of 863,280 traffic volume time series
can be extracted. The threshold M was set to 10 veh for the
first step of data cleaning. After the data preprocessing, a
total of 170947 time series from three cities were selected
for model building and transfer learning.

Model evaluation

The architectures of the neural networks are shown in Table 1.
We employed the ReLU activation function for more effective
learning. The initial learning rate is set to 0.001, and we
applied the step decay schedule with the decay rate of 0.75
per 50 steps. The batch size for all models is taken as 64.

Initially, we applied a Bayes patterns extractor to generate
the average resilience patterns for each cluster, the sequence
length of which is 181. Therefore, the input sequence length
of each neural network is the sum of the pre-pandemic
sequence length and the average resilience patterns length,
which is 361. To demonstrate the effectiveness of the
proposed Bayes resilience patterns extractor, we performed
an ablation experiment, i.e., comparing the case with and
without the extractor. Without the extractor, the average
resilience patterns in Figure 3 are unable to be extracted, and
therefore we directly fed the pre-pandemic sequence into the
neural network with the same architecture as our proposed
model. For each RNN, we added a feed-forward network
as the prediction head to generate the output. For transfer
learning, the parameters of all models were frozen, and their
outputs were fed into a feed-forward neural network for fine-
tuning.

For model performance evaluation, we employed Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Time Dynamic Warping Distance (DTW) as metrics,
which are defined as:

MAE =
1

n× t

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (3)
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(a) ANTWERP network (b) BANGKOK network (c) BARCELONA network

Figure 4. Study areas and networks.

Table 1. Model architecture

Model # Layers Hidden Size RNN Prediction Head Input Length Output Length

Bayes+MLP 3

Layer 1 = 256

Layer 2 = 128

Layer 3 = 181

361 181

Bayes+RNN

Bayes+LSTM

Bayes+BiLSTM

3

Layer 1 = 16

Layer 2 = 16

Layer 3 = 16

Layer 1 = 256

Layer 2 = 128

Layer 3 = 1

361 181

Bayes+MLP 3

Layer 1 = 256

Layer 2 = 128

Layer 3 = 181

180 181

RNN

LSTM

BiLSTM

3

Layer 1 = 16

Layer 2 = 16

Layer 3 = 16

Layer 1 = 256

Layer 2 = 128

Layer 3 = 1

180 181

436 grid cells

49
5 

gr
id

 c
el

ls

1 grid cell = 100 m X 100 m

Figure 5. Grid floating car data.

RMSE =
1

t

√√√√ 1

n

n∑
i=1

(
Yi − Ŷi

)T (
Yi − Ŷi

)
(4)

DTW =
1

n

n∑
i=1

|Wi| (5)

Where Yi refers to the ground truth, Ŷi represents the
predictions, n denotes the number of samples, t is the total
prediction length, and Wi is the warping path length between
the ground truth and prediction. Both MAE and RMSE
measure the difference between prediction and actual daily
traffic volume at the grid level. Since RMSE squares the
difference values, the results of RMSE are more sensitive
to outliers. DTW measures the difference between the entire
predicted and actual traffic volume time series at the grid
level, which can handle the unequal length and unaligned
time series. The unit of MAE and RMSE is veh/day, and for
DTW, it is veh/predicted length.
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Results

Macroscopic Traffic Volume Resilience Patterns
The total traffic volume time series of the three cities are
presented in Figure 6, 7, and 8, respectively. Compared with
their pandemic intervention timeline, it can be observed that
they have different patterns before and during the pandemic.

As shown in Figure 6, the trend of traffic volume time
series of Antwerp was relatively stable before the pandemic.
In the first half year of 2019, the values showed a slightly
increasing trend and remained at the same level in the
first three months of 2020. Subsequently, the government
of Antwerp implemented pandemic preventive measures in
March 2020, leading to a sharp decline in traffic flow,
reaching its minimum point. It was only half of the pre-
pandemic level by the end of March and maintained a low
level afterward. As the preventive policies were eased in early
May, the traffic volume gradually recovered with a slightly
accelerating trend. By the end of June, the overall traffic
volume in Antwerp had recovered to its pre-pandemic level.
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Figure 6. ANTWERP traffic volume time series.

Figure 7 shows that the trend of traffic volume in Bangkok
was relatively stable before April 2019, followed by a slight
decline. In early 2020, because of the timely prevention
measures, the traffic volume had a slightly decreasing trend
and declined to the minimum point at the beginning of April.
In March 2020, the curve recovered gradually but failed to
reach its original state. The traffic volume in Bangkok did not
experience a sharp decrease during the pandemic. Instead, it
exhibited an overall decreasing trend.

Figure 8 shows the traffic volume patterns in Barcelona.
Unlike the previous two cities, its traffic volume increased
gradually before 2020 and was relatively stable in early 2020.
Then a plunge showed in the curve due to the implementation
of the lockdown policies in March and remained at a low
level. After the lockdown, the traffic volume trended upward
and recovered to the pre-pandemic level.

From the macro level, the overall traffic volume in each
of the three cities has distinct trends and resilience patterns.
However, from a microscopic view, the grids of each city
contain various patterns, and for different cities, some grids
of them may contain the same patterns.
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Figure 7. BANGKOK traffic volume time series.

2019-01-02

2019-02-01

2019-03-03

2019-04-02

2019-05-02

2019-06-01

2020-01-02

2020-02-01

2020-03-02

2020-04-01

2020-05-01

2020-05-31

2020-06-30

Time step (day)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
af

fic
 v

ol
um

e 
(1

06  v
eh

s)

Pre-pandemic During-pandemic

BARCELONA traffic volume

Figure 8. BARCELONA traffic volume time series.

Results of Source Domain Model
Average resilience patterns We utilize the Elbow method
to determine the optimal number of clusters. The Elbow
method plots the within-cluster sum of squares (WCSS)
against the number of clusters. WCSS represents the total
squared distance between each point and the centroid within
its cluster, and the point of inflection on the WCSS curve,
often referred to as the “elbow”, is selected as the number of
clusters.
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Figure 9. Within-Cluster Sum of Square of different number of
clusters.

Based on the WCSS curve, the number of clusters can
either be set to three or four. Although more clusters
could lead to high inter-cluster similarities, the pre-pandemic
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time series were segmented into four clusters by the k-
Shape method for extracting more resilience patterns. Figure
10 presents each cluster’s clustering centroids of the pre-
pandemic time series. To verify our assumption presented in
Section Methodology that grids exhibiting similar pre-event
patterns would manifest comparable resilience patterns in the
face of similar events, the k-Shape method was also applied
to the entire traffic volume time series, which includes
both pre-pandemic and during-pandemic time series. The
grids within the clusters that were generated based on the
entire time series have high similarity across the entire time
series, and the pre-pandemic part of them also exhibited
high similarities with the clustering centroids generated by
using only the pre-pandemic time series except Cluster
0. This validates our assumption. According to Paparrizos
and Gravano (24), the cluster centroid is computed by
maximizing the cross-correlation similarity between a given
sequence and the time series within the cluster. Thus, the
cluster centroid intuitively reflects the time series shape
within the cluster. Note that the magnitude deviation is caused
by normalization, and the offset in the time dimension does
not affect the clustering results as the k-Shape method aligned
the time series automatically when calculating the shape-
based distance between time series. Figure 10a and 10b
show that the first two clusters comprised the normalized
traffic volume pre-pandemic time series with overall stable
trends. The centroid of cluster 0 shows smaller amplitudes
and some unstable amplitudes, and the reason is that cluster
0 captured more grids containing smaller traffic volumes,
which generally exhibit less-stable trends, but the fluctuations
are limited in range. On the other hand, the centroids of
the last two clusters each exhibit different declining trends
at different time steps. In addition, the centroid of each
cluster shows similar seasonality and amplitudes through
time, which means the elements within the same cluster have
high similarity.

According to the clustering results of the pre-pandemic
time series, the resilience patterns can likewise be segmented
into four clusters. Figure 11 presents the samples of during-
pandemic time series and the extracted average resilience
patterns from all elements in each cluster. Consistent with
pre-pandemic clusters, an apparent bolded trend curve can
also be observed among the samples of each cluster. The
average resilience patterns reflect the possible normalized
traffic volume with the highest degree of confidence in each
cluster. As shown in Figure 11a, the average resilience pattern
of cluster 0 showed a slightly downward trend in mid-March
2020 and a slow upward trend since April 2020. In contrast,
the average resilience pattern of cluster 1 (see Figure 11b)
presented a more distinct “resilience triangle” shape. The
extracted time series in Figure 11c and 11d had an overall
downward trend and slight resilience patterns.

Results of neural networks Table 2 summarizes the
performance of different models under different metrics

when predicting traffic volume resilience patterns at the grid
level.

In the source domain, it is unequivocally demonstrated
that the MLP model, underpinned by a Bayes patterns
extractor (BMLP), exhibits superior performance across all
three metrics. In contrast, the Bayes patterns extractor-
based RNN (BRNN) model performed worst. Both the
LSTM model and BiLSTM model, equipped with Bayes
pattern extractors (BLSTM and BBiLSTM, respectively),
demonstrated comparable performance to BMLP. For DTW,
the performance of the BMLP, BLSTM, and BBiLSTM was
almost identical, while the performance of BRNN was worse.
Apparently, the BRNN model failed to capture the similarity
of the traffic volume time series. For MAE, the BLSTM
and BBiLSTM models achieved similar performance to the
BMLP model, while the MAE of the BRNN model was
significantly lower than other models, indicating its relatively
poor prediction accuracy. Regarding RMSE, the BMLP and
BLSTM models had relatively low values of around 40,
significantly lower than the value of the BRNN model.
The recorded RMSE values show that significant errors less
influenced the predictions of the BMLP and BLSTM models
compared to BiLSTM and BRNN models.

Moreover, it can be observed that the resilience patterns
extracted by the Bayes patterns extractor can improve
the overall performance of RNN-based models but fail to
improve the performance of MLP. Although in RNN-based
models, the improvement of BRNN compared to traditional
RNN was marginal. In contrast, both BLSTM and BBiLSTM
significantly outperformed LSTM and BiLSTM across all
measured metrics. A possible explanation for this could
be that the memory capability of RNN for pre-pandemic
information is inferior to LSTM and BiLSTM over longer
prediction lengths.

It can be noticed that the BMLP model exhibited more
robust prediction performance than RNN-based models in the
source domain. The possible reason could be the cumulative
error caused by the long prediction length. In RNN-based
models, the BLSTM and BiLSTM outperformed the BRNN
because the gate mechanism can strengthen the ability of
the LTSM-based model to capture the long-term temporal
dependencies, thereby achieving similar performance as the
BMLP model.

Figure 12 presents the performance of the proposed
models as well as the Bayes ablated models. It can be
observed that the predictions of the Bayes-based model are
almost consistent with the ground truth. As shown in Figure
12a, the BMLP exhibited strong robustness over the entire
forecasting interval, but a noticeable bias is evident when
predicting the peak value for the initial month. Additionally,
it possessed relatively low precision at the time steps marked
by substantial changes in trends, which indicates that the
BMLP struggled to capture the dependency between adjacent
time steps but can learn the overall shape of the resilience
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Figure 10. Clustering centers of pre-pandemic clusters.
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(b) Resilience patterns of cluster 1
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(c) Resilience patterns of cluster 2
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Figure 11. During-pandemic clusters and average resilience patterns.

patterns. On the other hand, Figure 12b illustrates that the
BRNN performs well in the prediction from January to March
but fails to predict accurately during April and May when

clear frustration presents. It implies that the BRNN has
limitations in capturing the long-term dependencies of the
sequence and is not sensitive enough to the changes in the
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Table 2. Source domain ablation experiment

Model & Input features DTW (veh) MAE (veh/day) RMSE (veh/day)
MLP (180) 258.456 17.290 39.888
BMLP (180+181) 260.607 (+0.8%) 17.223 (-0.4%) 40.049 (+0.4%)
RNN (180) 275.614 19.371 44.916
BRNN (180+181) 273.541 (-0.8%) 19.134 (-1.2%) 44.745 (-0.4%)
LSTM (180) 273.553 18.884 44.033
BLSTM (180+181) 262.951 (-3.9%) 17.498 (-7.3%) 40.882 (-7.2%)
BiLSTM (180) 266.648 17.963 42.597
BBiLSTM (180+181) 261.848 (-1.8%) 17.747 (-1.2%) 41.504 (-2.6%)
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(b) RNN model
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(c) LSTM model
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(d) BiLSTM model

Figure 12. The macro level prediction and true values in the source domain.

trends of the time series. The BLSTM model was relatively
robust throughout the entire prediction interval, as displayed
in Figure 12c. Compared to BMLP, BLSTM performs better
in peak values and is also capable of capturing significant
changes in trends. However, BLSTM is unstable in predicting
the valley values of each period in our experiment. As shown
in Figure 12d, BBiLSTM performs better in predicting peak-
to-peak values in the first few months. However, for the
prediction from mid-March to the end of May, BiLSTM
continuously overestimated the traffic volume.

To quantify and compare the performance of different
models in different experiments for the macro-level
prediction, we further introduced the Mean Absolute
Percentage Error (MAPE) as the metric. The bar charts of

Figure 12 present the MAPE of different neural networks for
each time step.

Results of Target Domain Model
In the target domain, the input was only 50 days of the
Barcelona pre-pandemic traffic volume time series, and
a feedforward neural network was stacked to each pre-
trained model for fine-tuning. Table 3 lists the prediction
performance comparison of different models under different
metrics at the grid level.

In general, similar to the results of the source domain
models, the BMLP showed the strongest robustness across
all three metrics, whereas the BRNN delivered the poorest
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Table 3. Target domain ablation experiment

Model & Input features DTW (veh) MAE (veh/day) RMSE (veh/day)
MLP (50) 319.442 21.679 83.732
BMLP (50+181) 309.585 (-3.1%) 20.458 (-5.6%) 82.508 (-1.5%)
RNN (50) 332.087 22.401 85.213
BRNN (50+181) 317.416 (-4.4%) 21.580 (-3.7%) 84.702 ( -0.6%)
LSTM (50) 333.436 22.745 87.104
BLSTM (50+181) 311.488 (-6.5%) 20.830 (-8.4%) 85.225 (-2.2%)
BiLSTM (50) 330.359 22.547 87.788
BBiLSTM (50+181) 311.215 (-5.8%) 21.501 (-4.6%) 84.558 (-3.7%)
MLPref (50) 320.902 (+0.5%) 20.938 (-3.4%) 83.296 (-0.5%)
RNNref (50) 353.696 (+6.5%) 26.297 (+17.4%) 89.271 (+4.8%)
LSTMref (50) 336.000 (+0.8%) 23.821 (+4.7%) 87.854 (+0.9%)
BiLSTMref (50) 328.773 (-0.5%) 22.578 (+0.1%) 86.721 (-1.2%)

performance. The BLSTM and BBiLSTM exhibited similar
performance. The DTW results were consistent between
the target and source domains. The BMLP-based transfer
learning model continued to exhibit the most prominent
performance in capturing the similarity between traffic
volume time series. BLSTM and BBiLSTM exhibited
comparable DTW performances, which were close to
BMLP. However, the BRNN still performed poorly in
learning time series similarity. The MAE results show that
BLSTM and BMLP achieved high accuracy in our traffic
volume prediction task, while BBiLSTM and BRNN had
approximately 4% lower prediction accuracy. In terms of
RMSE, BMLP yielded significantly lower errors than other
models. Although BLSTM exhibited the highest accuracy in
MAE error, BBiLSTM and BRNN models were less affected
by significant errors.

Compared to the source domain tasks, the performance
of the BRNN was closer to other models. In the source
domain, the performance of BRNN and other models differs
by approximately 5% in terms of the DTW metric. However,
in the transfer learning experiment, the gap had reduced to
approximately 2-2.5%. Regarding MAE, the performance of
BRNN was even closer to BBiLSTM and exhibited better
performance than in the source domain. With respect to
RMSE, BRNN’s performance surpassed BLSTM and was
close to BBiLSTM. This result suggests that although RNN
models have a relatively poor ability to capture the similarity
of traffic volume time series at the micro level, they exhibited
good generalization ability in predictive accuracy.

Moreover, the proposed models showed stronger robust-
ness in transfer learning. Compared to the Bayes component
ablated models for DTW, BMLP, BRNN, BLSTM, and
BBiLSTM models performed more robustly on capturing
time series similarity by 3.1%, 4.4%, 6.5%, and 5.8%, respec-
tively. The accuracy of proposed models also improved by
5.6%, 3.7%, 8.4%, and 4.6% in MAE. Moreover, for RMSE,
the accuracy of our models increased by 0.6% to 3.7%.

From a macro perspective, all four models achieved
robust prediction performance for relatively stable trends
but exhibited particular bias in predicting the valleys of the
overall resilience pattern, as shown in the line charts of
Figure 13. Figure 13a illustrates the prediction results of the
BMLP model in the target domain. It can be observed that
the BMLP model delivered a generally robust performance,
particularly during periods with significant trend changes.
Figure 13b shows that although the BRNN model could
capture the overall trend of the time series, its predictive
ability for the valleys of the resilience patterns is limited.
Compared to the BRNN model, as shown in Figure 13c,
the BLSTM model better captured the downward trend of
the resilience patterns, though it overestimated the robustness
and resourcefulness of the transportation systems. Figure 13d
shows the prediction results of the BBiLSTM, which showed
a more robust performance in predicting the traffic volume
during the recovery phase of the time series than the BLSTM.

However, Figure 13 suggests that all models experienced
large MAPE when the traffic volume was relatively low. Due
to the inconsistency of traffic volume distribution between
the source domain cities and Barcelona, as well as data
instability arising from the small grid size, the models may
show subpar prediction performance for the grids and periods
characterized by low traffic volumes.

From the ablation experiments, it can be inferred that
Bayes pattern extractor-based models primarily contributed
to the model’s robustness in predicting peak and valley
values. Although the Bayes component ablated models (MLP,
RNN, LSTM, BiLSTM) could learn temporal dependencies
between different patterns, they all continuously overesti-
mated or underestimated the traffic volume in predicting
the overall city resilience patterns. The reason could be the
over-capturing of the local unstable traffic trends, which
made them fail to express the global traffic volume trends.
In long-term prediction tasks, the accumulative error also
was a limitation for RNN-based models (RNN, LSTM, and
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(a) MLP model
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(b) RNN model
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(c) LSTM model
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(d) BiLSTM model

Figure 13. The macro level prediction and true values in target domain.

BiLSTM). However, introducing the Bayes pattern extractor
can provide global information to the neural networks and
make the input grid time series more stable, which could
enhance the models’ robustness in predicting the overall
traffic volume at the macro level. On the other hand, as the
quality of traffic volume floating car data is highly contingent
upon the number of vehicles connected, which can increase
the instability of data with a small grid size. However, the
extracted resilience patterns might prevent the models from
learning such unstable trends. Hence, some models did not
show significant improvements at the grid level.

Effectiveness of Transfer Learning
The bottom partition of Table 3 shows the performance of
transfer learning by comparing the neural networks trained
directly (MLPref , RNNref , LSTMref , BiLSTMref ) and
trained by transfer learning.

The input of all neural networks was the time series
with only a 50-day pre-event traffic volume. While transfer
learning improved the performance of most models, it
led to lower predicted performance for the MLP and
BiLSTM, which indicates a negative transfer issue. For
RNN and LSTM, the predicted performance of all metrics
was improved by transfer learning, and the improvement of
RNN was particularly significant, as RNN is less robust and
more sensitive to data scarcity. In contrast, LSTM benefited

only marginally from transfer learning. Additionally, Table
3 demonstrates that all neural networks supported by the
Bayes resilience patterns extractor outperformed both Bayes
component ablated models and models trained directly,
which evidences that the proposed transfer learning strategy
not only enhances the robustness of neural networks but also
mitigates the negative transfer problem.

Conclusions

This study built a transferable model for capturing and
predicting transportation demand resilience patterns using
FCD. The framework integrates an unsupervised resilience
patterns extractor and different kinds of neural networks. By
conducting a case study under the context of the COVID-19
pandemic, we demonstrated the effectiveness of our model.

We applied grid traffic volume as model inputs and
sought to capture the transportation resilience patterns.
The proposed framework combines unsupervised machine
learning methods and supervised deep learning methods.
The unsupervised machine learning methods include time
series clustering and Bayes inference methods. We developed
prompt features for the grid-wise systems with homogeneous
resilience patterns and derived the average resilience patterns
as an additional input to the neural networks. Additionally,
the average resilience patterns enable the models to learn the
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experience from other systems. Unlike the existing literature,
in which the inputs to models for resilience pattern prediction
are mostly the traffic data at the local level or only the macro
level data, we augmented the feature set by incorporating the
extracted resilience patterns from different cities, providing
macro-level information for the deep learning models. More
importantly, we explored and analyzed the performance and
transferability of the models with diverse neural network
components.

Despite the satisfactory performance of our proposed
method in the case study, certain limitations persist. The
extracted resilience patterns enabled the proposed method to
learn experiences from different grids and cities. However,
the COVID-19 pandemic lasted for a relatively consistent
duration globally. Consequently, the effectiveness of the
proposed method across time series with varying event
durations remains unproven. In reality, most events have
different duration, and collecting data with the same event
duration requires considerable effort and is not always
applicable. Besides, the proposed framework relies on the
widespread availability of floating car data (FCD), but the
sparsity of the data or the necessity to quantify system
resilience using other indicators could lead to more efforts on
data collection and exploration of the temporal characteristics
of different indicators. We assumed cities with similar pre-
event traffic volume patterns would exhibit similar resilience
patterns during the pandemic. Therefore, we applied time
series clustering to capture the similarity between grids.
However, the performance of time series clustering depends
on how similar are the pre-event patterns between different
grids and cities. In this study, we only used the FCD from
two cities for resilience patterns extraction, which could not
guarantee that each grid from the target city could have
the right category to correspond. In addition, due to the
variability in socioeconomic resources and event response
measures among different cities, the reaction of citizens from
different cities to large events could be different, even if they
have similar driving patterns. Therefore, the proposed method
should be more predictive within a single country or region.
Furthermore, this paper only considered the similarity of the
data itself but neglected the spatial similarity between grids.
Hence, introducing spatial features could potentially enhance
grid clustering and accuracy in resilience pattern extraction.
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