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ABSTRACT1
Demand variations throughout the day and differences in area popularity across the city result2
in spatiotemporal changes in traffic flow. One of the well-known phenomena arising from these3
changes is tidal traffic, characterized by an imbalance between inbound and outbound traffic on4
a given road. This issue reflects the fluctuation in the alignment between transportation system5
supply and demand. Lane reversal control has been a common supply-side measure for alleviating6
this urban traffic “sickness” by adapting road capacity allocation to the demand imbalance between7
two directions of a road. This study investigates the dynamic network capacity allocation control8
problem in the era of connected and autonomous vehicles (CAVs), which integrates dynamic traffic9
signal splits and lane reversal controls. Considering the high dimensionality and non-linearity of10
urban transportation systems, we apply the sparse identification of nonlinear dynamics (SINDy)11
technique to construct a sparse yet sufficiently accurate surrogate model. This model estimates the12
forthcoming network traffic state based on the current state and implemented control decisions.13
The surrogate model is then integrated into a model predictive control (MPC) framework, forming14
a SINDy-MPC framework, to assist in optimal network capacity allocation decision-making in real15
time. The experiments show that the system identified by SINDy exhibits stability in the presence16
of Gaussian noise disturbances. The proposed dynamic network allocation control scheme can ef-17
fectively reduce traffic imbalance, improve traffic efficiency, and enhance traffic resilience against18
cyberattacks.19

20
Keywords: Network capacity allocation, Connected and autonomous vehicle, Model predictive21
control, Sparse model identification, Traffic resilience, Cyberattack22
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INTRODUCTION1
Daily commuting behaviors are a significant factor that contributes to the tidal traffic phenomenon2
in urban areas Fu et al. (1). The formation of tidal traffic exacerbates congestion to a great extent,3
especially during peak hours. To mitigate this impact, many cities have implemented reversible4
lanes on busy roads Wollenstein-Betech et al. (2). For instance, Park Avenue in Montreal, Canada,5
a five-lane road, allocates three lanes toward the city center and two lanes outward during the6
morning peak hours, and reverses in the evening. Reversible lanes serve as a capacity reallocation7
method between opposite directions on two-way roads Wollenstein-Betech et al. (2). Similarly,8
traffic signal control reallocates the capacity of intersection legs, with the effective capacity (also9
known as saturation flow) of these segments being determined by both design capacity and the10
signal plan. These strategies are commonly referred to as lane allocation (or lane reversal control)11
and traffic signal control, respectively, and they have been extensively studied in various contexts,12
such as during peak hours and under mixed traffic flow.13

Intuitively, combining these measures and extending control to the entire network can14
achieve full control and management of network capacity. While both static and dynamic traf-15
fic signal control have been widely investigated, lane reversal control is mostly modeled as a static,16
temporary measure for handling severe traffic imbalances Ampountolas et al., Chen et al. (3, 4).17
This is because, nowadays, the implementation of lane reversal control for human drivers is costly18
Levin and Boyles (5), attributed to the requirements for implementation time, personnel and mate-19
rials as well as the existing infrastructure design. More importantly, frequent lane direction changes20
inevitably cause confusion among human drivers Chen et al. (4).21

This study is focused on the integration and coordination of lane reversal control and traffic22
signal control. We name this kind of measure as network capacity allocation, and dynamic network23
capacity allocation refers to the dynamic implementation of the measures involved. Clearly, this24
approach offers numerous benefits. Firstly, within-day demand variations often lead to significant25
flow imbalances between directions on two-way roads. An optimal dynamic capacity allocation26
strategy thus can be sought so that the network capacity aligns with varying demand. Secondly,27
transportation disruptions due to special events, such as road maintenance and marathons, can re-28
sult in substantial societal and economic losses. They are also often related to changes in the supply29
and/or demand of the transportation system. Dynamic network capacity allocation can effectively30
mitigate these non-equilibrium states, thereby facilitating traffic efficiency. Moreover, dynami-31
cally adjusting the allocation strategy according to traffic conditions may be more cost-efficient32
than widening roads or extending the network in addressing traffic congestion issue Ampountolas33
et al. (3).34

However, implementing dynamic network capacity allocation is challenging nowadays due35
to the involvement of human drivers. Here, we focus on a scenario where all vehicles are connected36
and autonomous (CAVs) following previous studies on dynamic lane allocation, such as (5), (6),37
and (4). Vehicles keep communicating with roadside units (RSUs) and the traffic control center38
(TCC) in regard to location information and network configuration. In this scenario, vehicles can39
react immediately to changes in the network capacity allocation strategy Chu et al. (6). Traffic40
signals, although possibly invisible, would exist as packages of messages informing right-of-way41
determinations. It is important to note that only roads showing unbalanced traffic in two directions42
will be included in the dynamic control system. This method can address the problem of unbal-43
anced traffic and reduce the control system’s dimension, allowing real-time implementation with44
limited computational resources.45
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Given the high dimensionality and non-linearity characteristics of transportation systems1
Qurashi et al. (7), implementing dynamic network capacity allocation control is particularly chal-2
lenging, especially regarding optimal control decisions for a specific system state. However, many3
systems actually evolve on a low-dimensional attractor characterized by large-scale coherent struc-4
tures Brunton et al. (8). Consequently, we can apply dimension reduction techniques to identify5
active features from traffic measurements and control decisions to construct a simpler dynamic6
system. Such a system facilitates fast solutions, enabling real-time network capacity allocation7
control.8

This study aims to formulate the dynamic network capacity allocation problem, develop a9
low-dimensional dynamical system to describe the relationship between traffic state and capacity10
allocation control decisions, and evaluate the resilience of the developed control system. Specifi-11
cally, we employ the sparse identification of nonlinear dynamics (SINDy) technique Brunton et al.12
(8) to construct a low-dimensional yet sufficiently accurate system from traffic measurements and13
capacity allocation control decisions. This system is then integrated into a model predictive con-14
trol (MPC) framework to facilitate real-time capacity allocation control. Additionally, considering15
that CAVs are vulnerable to cyberattacks due to their reliance on electronics and software, we also16
analyze the resilience of the proposed dynamic capacity allocation control to such attacks.17

The remainder of this paper is structured as follows. Section 3 formulates the dynamic18
network capacity allocation problem. Section 4 introduces the MPC framework, SINDy algorithm,19
and the development of resilient dynamic network capacity allocation problem. Then, we analyze20
the experiments of a case study in Section 5. Finally, conclusions are summarized in Section 6.21

PROBLEM STATEMENT22
In this study, we assume that the configuration of a transportation network can be dynamically23
altered to adapt to within-day traffic flow variations, particularly in the era of CAVs facilitated by24
vehicle-to-everything (V2X) technology. By “network configuration,” we refer to the allocation of25
network capacity, which is jointly regulated through lane allocation and traffic signal planning. For26
example, denote the design capacity of a lane i as qcap

i , then its effective capacity can be estimated27
by28

qeff
i =

qcap
i tg

i
T

(1)29

where tg
i is the total green time assigned to the phases when lane i has the right of way, and T is the30

signal cycle. The capacity of a link l is then determined by its number of lanes and traffic signal31
plan:32

ql =
nl

∑
i=1

qeff
i (2)33

where nl indicates the number of lanes in link l. Clearly, the effective capacity of a link is controlled34
by its number of lanes and the related traffic splits. This is the basic idea behind the capacity35
allocation at the link level. Extending this concept to encompass the entire transportation network,36
we arrive at the network capacity allocation problem investigated in this study.37

For dynamic or real-time network capacity allocation, this study envisions a future sce-38
nario where all vehicles are connected and autonomous and communicate with infrastructure and39
the traffic control center (TCC) in real-time via V2X technologies. Specifically, the real-time40
communication includes four key aspects, as shown in Figure 1. (1) Vehicles receive updated41
network configuration strategies for the upcoming time interval and adjust their driving behaviors42
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accordingly. (2) Vehicles within a neighborhood communicate with each other regarding their ad-1
justments to prevent collisions. (3) Vehicles proactively send their location information to nearby2
sensors or are passively detected by sensors. (4) The sensor network updates the overall traffic3
state of the network and sends traffic measurements to the TCC for decision-making on network4
configuration. These communication means are also depicted in Figure 1 for reference.5

TCC

(1a)

(1b)

(1c)

(2)

(3)

(4a)

(4b)

(1) TCC-to-network communication
(2) Vehicle-to-vehicle communication
(3) Vehicle-to-sensor communication
(4) Sensor-to-TCC communication

FIGURE 1: Architecture of an example vehicular sensor network.

Consider a transportation network defined as G(V,A) with V and A denoting sets of nodes6
and links, respectively. Let ut denote the network capacity allocation strategy in time interval7
t, a vector of decisions including all controllable links and traffic signals. Let Dt and yt denote8
travel demand and traffic measurements within t. Then, we can characterize the dynamic capacity9
allocation problem as below.10

Problem Statement (Dynamic network capacity allocation). Given a transportation network G(V,A),11
the problem is to determine a set of lane allocation and traffic signal plans u1, . . . , ut that can12
optimize a pre-defined objective function ggg subject to dynamic travel demand D1, . . . , Dt . Mathe-13
matically, the problem can be expressed as14

u∗
1, . . . ,u

∗
t = argmin

u1,...,ut

t

∑
k=1

ggg(yk|G,Dk,uk,yk−1) (3)15

ggg(yk|G,Dk,uk,yk−1) indicates that the traffic state of the current time step yk is dependent16
on the travel demand Dk, allocation decision uk, and the traffic state of the previous time step17
yk−1. The inputs of the problem include a given transportation network, dynamic travel demand,18
and traffic measurements for previous time steps, while the outputs will be the capacity allocation19
strategies.20
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METHODOLOGY1
The dynamic network capacity allocation problem can be structured as a dynamic control prob-2
lem. Given that transportation systems are complex, nonlinear, and high-dimensional, we propose3
a hybrid approach incorporating both data-driven and model-based techniques to address this chal-4
lenge. Specifically, we integrate the Sparse Identification of Nonlinear Dynamics (SINDy) tech-5
nique into a Model Predictive Control (MPC) framework. This integration allows us to identify a6
low-dimensional representation of the system and achieve dynamic control of network capacity.7

Figure 2 illustrates the integrated SINDy-MPC framework for traffic control problems. Ini-8
tially, SINDy is applied to model the relationship between the current traffic state, control signals,9
and the traffic state in the subsequent timestep. Subsequently, this identified system is embedded10
into the MPC framework to optimize control decisions for the next timestep. It is important to note11
that although the framework separates these two components, the model and the control law can12
be learned simultaneously. One can develop a streaming algorithm to continually refine the model13
with new observations, iterating between model identification and control optimization to achieve14
convergence and reliable results Kaiser et al. (9). Detailed descriptions of these two components15
are provided in Section 4.1 and Section 4.2, respectively.16

This approach leverages the strengths of both data-driven and model-based methods, en-17
suring a robust and adaptive solution for the dynamic network capacity allocation problem.18

Control
optimizer

Transportation
system

SINDy model

Optimizer

Objective

Constraints

Unknown dynamics Traffic data

= ... ...

Sparse regression
Ti

m
e

Density

Fl
ow

(a) (b)

FIGURE 2: The SINDy-MPC framework for traffic control problems. (a) MPC framework; (b)
SINDy.

Model predictive control19
MPC is a flexible framework for controlling nonlinear systems with constraints, time delays, in-20
stability, and uncertainty. For high-dimensional complex systems, one can integrate various types21
of surrogate models into the framework to realize dynamic or even real-time control. This fits with22
the characteristics of our problem.23

In MPC, the open-loop actuation input u is optimized over a receding horizon tc = mc∆t to24
minimize a given cost function J over a prediction horizon tp = mp∆t, where ∆t denotes the size25
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of a timestep. In general, the prediction horizon cannot be shorter than the receding horizon, i.e.,1
mp ≥ mc, and the input u is assumed to be constant from tc to tp. Given the system state x j, MPC2
optimizes a control sequence u(·|x j) := {u j+1, · · · ,u j+k, · · · ,u j+mc} to minimize the following3
objective:4

Jx j =
mp−1

∑
k=0

∥x̂ j+k − r j+k∥2
Q +

mc−1

∑
k=1

(∥u j+k∥2
Ru

+∥∆u j+k∥2
R∆u

) (4)5

where r represents the reference trajectory to be tracked, x̂ indicates the predicted system state,6
∥x∥2

Q = x⊤Qx, and ∆u j = u j − u j−1. Q ⪰ 0 (positive semi-definite), Ru ≻ 0 (positive definite)7
and R∆u ≻ 0 (positive definite) are the weight matrices for the penalty terms of system state, ac-8
tuation, and actuation difference, respectively. Note that we do not include a terminal cost in this9
formulation.10

The following constraints are incorporated:11
x̂k+1 = f̂(x̂k,uk) (5)12

umin ≤ uk ≤ umax (6)13

∆umin ≤ ∆uk ≤ ∆umax (7)14
where f̂(·) represents a surrogate model describing system dynamics. Equations (6) and (7) repre-15
sent the bounds on the actuation and its difference between two successive timesteps, respectively.16

The optimal control is then applied for one time-step, i.e., only u j+1 is applied. The proce-17
dure is reinitialized and repeated at each subsequent timestep. This results in an implicit feedback18
control raw19
K(x j) = u( j+1|x j) = u j+1 (8)20
This equation reflects that the control action will be the first term in the optimized actuation se-21
quence starting at the initial condition x j.22

Sparse identification of nonlinear dynamics with control23
Sparse identification of nonlinear dynamics (SINDy) Brunton et al. (8) was developed to build up24
parsimonious models for identifying nonlinear systems with limited measurement data. This tech-25
nique focuses on discovering the underlying dynamics of a system by finding the simplest model26
that can accurately describe the observed data. Later on, SINDy with control Kaiser et al. (9) was27
proposed, extending the original SINDy framework to include control inputs. This advancement28
provides a way to evaluate the effects of control actuation inputs on the state of the identified29
system. Consider a nonlinear dynamical discretized system of the form:30
xk+1 = f(xk,uk) (9)31
where xk ∈Rn represents the system state or measurements, uk ∈Rq represents control inputs, and32
f(xk,uk) : Rn ×Rq 7→ Rn describes system dynamics.33

The SINDy with control algorithm leverages sparse regression techniques to identify sig-34
nificant terms from a library of candidate linear and nonlinear model terms in the state x and35
control input u. Function f is then developed to approximate the complex system of interest. The36
implementation of the SINDy with control algorithm consists of four steps, including data collec-37
tion, construction of the library of candidate terms, sparse regression implementation, and system38
identification. In particular, SINDy with control implements the following steps:39

Data collection. As a data-driven model identification approach, the successful implemen-40
tation of the SINDy algorithm requires sufficient snapshots of the system state x and control inputs41
u. In our case, we can construct a dataset consisting of various capacity allocation strategies and42
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their resulting traffic measurements. Previous applications illustrated that SINDy also performs1
well with limited data. If m snapshots were measured, then we have the following two matrices:2
X = [x1 x2 · · · xm]

⊤ and U = [u1 u2 · · · um]
⊤3

Furthermore, we need to construct a matrix X′ with the columns of X advanced one timestep,4
which represents the system output, subject to the current state and the control about to be effective.5
X′ = [x2 x3 · · · xm+1]

⊤6
Library of candidate terms. Construct a set of candidate terms (either linear or nonlinear7

functions) that may be able to describe the complex system dynamics of interest according to the8
domain knowledge or empirical analysis. We provide the following set of terms as an example.9
ΘΘΘ(X,U) = [1 X U X⊗X X⊗U · · · sin(X) sin(U) sin(X)⊗ sin(U) · · · ] (10)10
where X⊗U represents the matrix consisting of all product combinations of the components in X11
and U. That is,12
X⊗U = [X1 ◦U1 X1 ◦U2 . . .Xn ◦Uq] (11)13
where Xk(k = 1, . . . ,n) and Uk(k = 1, . . . ,q) are the k-th columns of X and U, respectively, and ◦14
represents the Hadamard product. The dimension of X⊗U would be m×nq.15

Sparse regression. We expect to include a large number of functions in the library given16
by Equation (10) such that the sparse regression described in the next step can identify the system17
dynamics accurately. Assuming that ΘΘΘ(X,U) contains all functions necessary for describing the18
system, then the system can be written as19
X′ = ΘΘΘ(X,U)ΞΞΞ+E (12)20
where ΞΞΞ indicates the coefficient matrix relating the terms in ΘΘΘ(X,U) to the elements in X′.21

However, many dynamical systems are often governed by relatively few terms Fasel et al.22
(10). In addition, it is beneficial to reduce the complexity of the identified system for the sake of ac-23
celerating the solution of the optimization problem to be addressed in the control framework. This24
can also enable the real-time control of complex systems. Therefore, the least squares regularized25
with an l1 norm can be implemented to find a sparse representation of the system.26

ξ̂ξξ k = argmin
ξξξ k

1
2m

∥X′
k −ΘΘΘ(X,U)ξξξ k∥2

2 +α∥ξξξ k∥1 (13)27

where X′
k and ξξξ k are the k-th columns of X′ and ΞΞΞ, respectively, α is a hyperparameter determining28

the regularization strength. ∥ · ∥1 and ∥ · ∥2 indicate the l1 norm and l2 norm, respectively.29
Identified system. ξ̂ξξ k is a vector of coefficients determining the active terms in the k-th30

row in Equation (10). In other words, it indicates the terms that are significant in describing the31
dynamics of the k-th state measurement. By solving the problem expressed by Equation (13), we32
obtain the identified system33
x̂k+1 = f̂(xk,uk) = ΘΘΘ(xk,uk)Ξ̂ΞΞ (14)34
where ΘΘΘ(xk,uk) represents applying the same transformation to xk and uk as ΘΘΘ(X,U), and Ξ̂ΞΞ35
denotes the estimated coefficient matrix.36

The identified sparse model can then be integrated into the MPC framework and works as37
a surrogate of the complex system for evaluating different control strategies.38

Resilient dynamic network capacity allocation problem39
In Section 3, we have formulated the dynamic network capacity allocation problem as Equation (3).40
Considering the increasing frequency of transportation disruptions due to natural disasters (e.g.,41
flooding) and their severe aftermath, we aim to develop a dynamic network capacity allocation42
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problem targeting improving urban traffic resilience by leveraging the SINDy-MPC framework in1
this section. To this end, we need to integrate the evaluation of traffic resilience into the objective2
function of the problem, i.e., ggg(·) in Equation (3) and Jx j in Equation (4), and adapt the MPC3
framework to the network capacity allocation problem.4

Traffic resilience objective development5
In this study, we want to examine the efficacy of dynamic network capacity allocation in improving6
urban traffic resilience in the era of fully autonomous vehicles. Traffic resilience has been defined7
as the “ability of an urban road transportation system to prepare for different kinds of disruptions,8
effectively serve vehicles, and recover rapidly to its optimal serving rate” Lu et al. (11). Also,9
traffic resilience loss due to congestion can be evaluated by the deviation of the trip completion10
rate from its optimal value, which is given by11
δ

d
k = Dc −Dk (15)12

where Dk is the trip completion rate at timestep k, and Dc is its critical (optimal) value. The problem13
is to minimize the traffic resilience loss over the time period under investigation. Therefore, in this14
case, the objective function can be expressed as15

J =
mp

∑
k=1

∥Dk −Dc∥2 (16)16

Given the linear relationship between the trip completion rate and weighted space-mean flow un-17
covered by the MFD curve, i.e., D(k) = γ q̄k, the objective function can be transformed to18

J =
mp

∑
k=1

∥q̄k −qc∥2 (17)19

Since q̄k = ∑i∈L biqi,k/∑i∈L bi where L is the set of links being detected, bi is the length of link i,20
we can further transform the objective to21

J =
mp

∑
k=1

∥∥∥b⊤qk −b⊤qc

∥∥∥2
(18)22

where, for simplicity, we construct a vector qc which has the same dimension as qk and all ele-23
ments are qc. Moreover, for generality, we would like to insert a weight matrix into the objective24
function to incorporate the consideration of heterogeneous reliability of the state measurements.25
Mathematically, this can be achieved by26

J =
mp

∑
k=1

∥∥∥b⊤Wqk −b⊤Wqc

∥∥∥2
(19)27

=
mp

∑
k=1

(qk −qc)
⊤W⊤bb⊤W(qk −qc) (20)28

=
mp

∑
k=1

∥qk −qc∥2
W⊤bb⊤W (21)29

Ultimately, the resilience evaluation objective also has the same format as the first summa-30
tion term in Equation (4). Considering that implementing and changing capacity allocation control31
strategies leads to no additional expense in the context under consideration, the second summation32
term in Equation (4) would not be evaluated in the dynamic capacity allocation control framework.33
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Problem formulation1
One of the critical factors affecting the effectiveness of the SINDy model as a surrogate lies in2
the construction of the library of candidate terms to be included in the sparse regression, i.e., the3
second step of SINDy. Equation (21) implies that the system state is represented by the traffic4
flows. According to the urban traffic network modeling approach proposed in (12), the traffic flow5
dynamics of a link z at a junction j1 can be estimated by6

xz(t +1) = xz(t)+∆t

 ∑
w∈I j1

τw,z ∑
i∈Vw

u j1,i(t)
Sw

T
− ∑

i∈Vz

u j2,i(t)
Sz

T
+ ez(t)

 (22)7

where I j denotes the set of incoming links of junction j, τw,z is the turning rate giving the rate of8
vehicles that reach junction j1 from an incoming link z ∈ I j1 and turn into the link of interest z,9
u j1,i denotes the green time of phase i, Vw denotes the set of phases that link w has the right of way,10
Sw represents the saturation flow of link w, and ez(t) represents the disturbance in demand and exit11
rates. Simply speaking, the first term within the square brackets calculates the traffic demand from12
other links to the link of interest, while the second term calculates the exit flow from the link of13
interest to its connecting links. In both terms, multiplications of control signals u and saturation14
flows S are present. Inspired by this and given that saturation flow often cannot be met, we mainly15
incorporate the term X⊗U in the library, that is16
ΘΘΘ(X,U) = [1 X U X⊗U] (23)17

To make the notations consistent, we replace the q in Equation (21) with x, and define Q =18
W⊤bb⊤W. Then, we reach the following formulation of the dynamic network capacity allocation19
problem with SINDy-MPC:20

min
u(·|x j)

Jx j =
mp

∑
k=1

∥x̂ j+k −xc∥2
Q (24)21

s.t. x̂⊤k+1 = [1 x̂⊤k u⊤
k (x̂k ⊗uk)

⊤]



| ξ̂ξξ
⊤
1 |

| ξ̂ξξ
⊤
x |

| ξ̂ξξ
⊤
u |

| ξ̂ξξ
⊤
xu |

 (25)22

umin ≤ uk ≤ umax (26)23
where xc indicates the vector of the given reference value for the critical weighted space-mean24
flow, ξ̂ξξ 1, ξ̂ξξ x, ξ̂ξξ u and ξ̂ξξ xu denote the estimated coefficients for the corresponding terms indicated25
by their subscripts.26

Equation (25) can be transformed to27

x̂⊤k+1 = ξ̂ξξ
⊤
1 + x̂⊤k ξ̂ξξ

⊤
x +u⊤

k ξ̂ξξ
⊤
u +(x̂k ⊗uk)

⊤
ξ̂ξξ
⊤
xu (27)28

which can be further simplified as29
x̂k+1 = ξ̂ξξ 1 + ξ̂ξξ xx̂k + ξ̂ξξ uuk + ξ̂ξξ xu(x̂k ⊗uk) (28)30

The control inputs u in the capacity allocation problem, as explained in Section 3, include31
lane allocation controls and traffic signal splits, which are discrete and continuous variables, re-32
spectively. Therefore, we can decompose u into two parts based on the nature of controls, resulting33
in a clearer presentation of the problem. Similarly, ξ̂ξξ u is decomposed into ξ̂ξξ c and ξ̂ξξ d correspond-34
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FIGURE 3: Network of the study area.

ingly, and ξ̂ξξ xu is also decomposed into ξ̂ξξ xc and ξ̂ξξ xd. The problem can then be expressed as1

min
u(·|x j)

Jx j =
mp

∑
k=1

∥x̂ j+k −xc∥2
Q (29)2

s.t. x̂k+1 = ξ̂ξξ 1 + ξ̂ξξ xx̂k + ξ̂ξξ cck + ξ̂ξξ xc(x̂k ⊗ ck)+ ξ̂ξξ ddk + ξ̂ξξ xd(x̂k ⊗dk) (30)3

cmin ≤ ck ≤ cmax (31)4

dmin ≤ dk ≤ dmax (32)5
We can see that this is a nonlinear mixed-integer problem due to the presence of x̂k⊗ck and6

x̂k ⊗dk. While nonlinear models can improve the accuracy and reliability of MPC outputs, they7
also pose a challenge to real-time control due to the increase in computational complexity. Fortu-8
nately, the development of computing power and advanced algorithms are increasingly removing9
the stumbling stones that have prevented nonlinear MPC from being used in real-time applications10
Kaiser et al. (9).11

CASE STUDY AND RESULTS12
Experiment setup13
We conducted experiments using the busiest residential area (Maxvorstadt and Schwabing, see Fig-14
ure 3) in the city center of Munich, Germany. This network covers about 25 km2 and includes 2,53515
links. The travel demand for this network was carefully calibrated with real traffic measurement16
observations using the simultaneous perturbation stochastic approximation (SPSA) algorithm Spall17
(13) and its variant combining SPSA and principle component analysis (PCA) Qurashi et al. (7).18
The traffic light coordination and adaptation were also optimized accordingly. Readers are referred19
to (14) for more detailed information on the calibration procedure. To examine the effectiveness of20
the proposed dynamic capacity allocation control approach in improving traffic resilience, we uti-21
lized the Simulation of Urban MObility (SUMO) simulator Lopez et al. (15). All experiments were22
conducted at a microscopic resolution, employing a dynamic stochastic user assignment method to23
approximate dynamic user equilibrium (DUE).24

As discussed in Section 3, all vehicles are assumed connected and autonomous. To simulate25



Lu, Qurashi, and Antoniou 12

the driving behavior of these vehicles, the Intelligent Driver Model (IDM), a well-known car-1
following model. The IDM was calibrated using driving trajectory data from Toyota Camry cars2
equipped with an adaptive cruise control (ACC) system. We refer readers to (16) and (17) for3
more details about this dataset and the calibration procedure, respectively. IDM determines car-4
following actions by controlling vehicle acceleration, which is given by5

aIDM(s,v,∆v) = a

[
1−

(
v
v0

)δ

−
(

s∗(v,∆v)
s

)2
]

(33)6

where7

s∗(v,∆v) = s0 + vT0 +
v∆v

2
√

ab
(34)8

∆v = v− v(p) (35)9
where aIDM represents the acceleration to be executed, v and v(p) denote the vehicle velocity at the10
current and previous time step, respectively, and v0 is the free-flow velocity. The explanation of11
the rest notations and the corresponding calibrated parameter values are provided in Table 1.

TABLE 1: Calibrated IDM parameters for autonomous (ACC) vehicles.

Parameter Calibrated value Description

T0 2.2 s Desired time headway
s0 6.3 m Jam distance
a 0.6 m/s2 Maximum acceleration
b 5.2 m/s2 Desired deceleration
δ 15.5 Free acceleration exponent

12
In terms of the constraints on network capacity allocation, we disallow the full blocking13

of any links to maintain the completeness of the route set. This measure prevents vehicles from14
running out of available routes and ensures connectivity to destinations throughout their trips. In15
this case, dmin = 111 and dmax = a− 111, where a is the vector representing the number of lanes on16
all links. Similarly, for signal timing constraints, we set cmin = 0.1TTT and cmax = 0.9TTT , where TTT17
denotes the cycle times of the intersections under consideration. These constraints ensure that the18
duration of any signal phase must be longer than 10% of the cycle time but cannot exceed 90%19
of the entire cycle. This treatment guarantees a balanced and effective allocation of green times at20
intersections, promoting smoother traffic flow.21

Selection of traffic measurements22
For large-scale networks, it is crucial to select representative links for measurement. As the net-23
work scale increases, the number of candidate terms in the library also grows dramatically. Limit-24
ing the number of traffic measurements used to represent the system state can not only reduce the25
dimensionality of system terms but also mitigate noise from uncertain and unreliable traffic mea-26
surements. The selected links should be able to provide reliable estimates to the MFD dynamics27
estimated from all links. Thus, we use the root mean squared error (RMSE) between the average28
traffic volumes estimated by all links and those by the selected links to determine the effective set29
of links to measure. Four selection methods are compared: (1) selecting links randomly; (2) se-30
lecting links with higher traffic volumes; (3) selecting links with more stable traffic over the period31
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of interest; (4) selecting links with less correlation.1
Figure 4 shows the results obtained from these selection methods by using data from 10002

simulation replications. From Figure 4a, it is evident that randomly selecting links leads to fluctu-3
ating RMSE values. According to the law of large numbers, the fluctuation gradually diminishes4
with the increment of the number of selected links. In terms of the second method, intuitively,5
averaging the traffic states of links with high traffic volumes will lead to an overestimation of the6
traffic state of the entire network. This is confirmed by the high RMSEs shown in Figure 4b. For7
instance, if we only consider links with traffic volumes higher than 200, the resulting RMSE and8
the number of links will be 189.33 and 157, respectively. In essence, the third method assumes that9
traffic stability is a good indicator of link representativeness regarding traffic states. Here, we use10
the coefficient of variation across all link-wide observations as an indicator. However, as shown in11
Figure 4c, the RMSEs associated with small numbers of links are still very large. It only shows a12
minor improvement compared to the second method. Finally, the last method validates that select-13
ing links with less correlation provides accurate estimations of network-wide traffic states. With14
fewer than 200 links selected, the RMSE is even less than 20. In contrast, the first method is unsta-15
ble with fewer than 100 links. Therefore, in the following experiments, we employ the last method16
to determine the links to measure. More specifically, we set the correlation threshold to 0.2 so that17
177 links are selected, resulting in a RMSE of 3.04.18

0 300 600 900 1200
Number of links

0

10

20

30

40

RM
SE

 (v
eh

/h
)

RMSE

(a) Random selection

500 400 300 200 100
Traffic volume threshold (veh/h)

0

100

200

300

400

500

RM
SE

 (v
eh

/h
)

RMSE

0

500

1000

1500

2000

Nu
m

be
r o

f l
in

ks

# of links

(b) Links with high traffic volumes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Coefficient of Variation threshold

0

50

100

150

RM
SE

 (v
eh

/h
)

RMSE

0

500

1000

1500

2000

Nu
m

be
r o

f l
in

ks

# of links

(c) Links with stable traffic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Correlation threshold

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

RM
SE

 (v
eh

/h
)

RMSE

200

400

600

800

1000

1200
Nu

m
be

r o
f l

in
ks

# of links

(d) Links with less correlation

FIGURE 4: Determination of representative links to measure.
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SINDY model estimation performance1
The problem expressed by Equation (13) is a critical step in SINDy for estimating a sparse model2
based on observed system dynamics. The least squares method, regularized with an l1 norm,3
leads to the lasso regression technique. The problem can be efficiently solved by a bunch of4
optimization algorithms, such as coordinate descent and the sequential thresholded least squares5
(STLS) algorithm Brunton et al. (8). In this study, we apply the coordinate descent algorithm6
implemented in the Lasso module of the scikit-learn Python library.7

Moreover, we incorporate cross-validation to identify the optimal regularization hyperpa-8
rameter α∗ to determine the active terms and their corresponding coefficients. Figure 5a shows9
cross-validation results for the final link within the set of links selected in Section 5.2. This figure10
depicts the performance of different α values under five-fold cross-validation, together with the11
average performance across all folds. The optimal α is located by the minimum point of the av-12
erage performance curve. Figure 5b displays the distribution of the optimal α values for different13
links. While the optimal α varies among the links, most values fall in the range of 10 to 130.
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FIGURE 5: Determination of the regularization penalty.
14

Figure 6 shows the distributions of the number of active terms identified by the SINDy15
technique and the RMSE between observed traffic measurements and those estimated by the iden-16
tified system. The results indicate that the traffic states of most links are governed by 100 to 2,00017
active terms out of about 42,000 potential terms. These models achieve normalized RMSEs, cal-18
culated relative to the corresponding mean values, ranging from 0 to 0.5 for the majority of links,19
demonstrating a satisfactory balance between model complexity and estimation accuracy.20

Control evaluation of SINDy-MPC21
We evaluate the proposed SINDy-MPC framework through three aspects. First, we analyze its22
stability by replacing the “Transportation system” component in the framework with the identified23
system via SINDy, i.e., the transportation system is modeled as an analytical function. Let x̃ be24
the “observed” traffic measurements, then x̃k+1 = x̂k+1 in this case. Second, we introduce some25
noise into the analytical “transportation system” to evaluate the stability of the control system.26
Namely, x̃k+1 = x̂k+1 + δδδ 0, where δδδ 0 ∼ N (000,σσσ0). In the following associated experiment, we27
set σσσ0 = 0.1x̂. Third, we incorporate the complex traffic simulator as the “transportation system”28
to simulate the traffic states under different control actions. We have x̃k+1 = S (x̂k, ûk) where S29
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FIGURE 6: Summary of the models identified.

represents the traffic simulator. This scenario is used to assess the performance of the proposed1
dynamic network capacity control strategy in real applications. In these experiments, both mp and2
mc are set to 3, i.e., the prediction horizon is as wide as the receding horizon.3

Figure 7 illustrates the MPC results from 20 control steps. The bottom subplot shows4
that the system converges after around 6 iterations, with the value of the objective reducing by5
3.76%. Three examples are provided for the traffic measurements, traffic signals, and lane alloca-6
tions under control in the first three subplots, respectively. Traffic volumes of the selected three7
example links also observe a convergence within 20 iterations. We also found that most traffic8
measurements obtain an improvement in traffic volumes. As the output of the control system, the9
convergence of x indicates that this system is a stable system. Traffic signal configurations, on10
the other hand, may differ significantly in consecutive intervals like signal 1, or gradually stabilize11
to fixed configurations like signal 2 and signal 3. Likewise, the selected links for lane allocation12
control present a similar phenomenon.13

Then, to validate the stability of the system with stochasticity involved, we define a stochas-14
tic model by introducing a disturbance term to the analytical system. The disturbances are imposed15
on the traffic measurements, proportional to their deterministic values. Figure 8 compares the final16
stabilized x’s obtained from the deterministic and stochastic system. Their closeness evidences17
that the presented control system preserves its stability nature under a stochastic context and is18
robust to noisy measurements. Furthermore, it is worth mentioning that only one continuous con-19
trol decision (i.e., signal split) and three discrete control decisions change in the stochastic system20
compared to the results obtained from the deterministic one.21

Further, we applied the SUMO simulator to simulate the response of the transportation sys-22
tem to the control decisions. Compared to analytical disturbance, the traffic simulator incorporates23
more complex disturbance patterns by integrating various uncertainties ranging from uncertain24
driving behaviors to uncertain traffic assignments. In addition, the demand changes that cannot25
be captured by the system also render significant uncertainty in the demand side of the simulator,26
thereby imposing unpredictability on the system state. As a result, it is hard to evaluate the stability27
of the integrated system. Instead, we compare the simulated traffic measurements with the values28
estimated by the system identified by SINDy, as shown in Figure 9. It is clear that the traffic mea-29
surements estimated by the identified SINDy model fit well with the simulated values, albeit with30
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a slight tendency towards overestimation. The suggested control decisions by the MPC-SINDy1
framework are thus reliable subject to acceptable prediction errors.
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FIGURE 9: Comparing the simulated x and the estimated x.

2

Resilience to cyberattacks3
Cyberattack disruption scenario design4
Aside from testing the performance of the proposed approach under normal operational conditions,5
it is also important to validate its robustness in the context of cyberattacks. CAVs, which are6
infused with numerous electronics and software to support various autonomous features, resemble7
computers more than traditional vehicles. Therefore, cybersecurity emerges as a critical issue in8
the era of CAVs Katrakazas et al. (18). As a typical example, we devised a scenario involving a type9
of sensor attack, specifically targeting Light Detection and Ranging (LiDAR) sensors. LiDAR is10
commonly used in CAVs for collision avoidance, ACC, and object recognition. Given that the car-11
following model adopted in this study is calibrated with trajectories of ACC vehicles, this scenario12
design is particularly relevant. In our experiments, we simulate attacks on the acceleration reaction,13
introducing disturbances to the acceleration decision-making process of the vehicles. Denote p as14
the proportion of vehicles being attacked. The acceleration after attacks will be given by15
aATK(s,v,∆v) = aIDM(s,v,∆v)+δ1v (36)16
where the second term indicates the disturbance intensity on acceleration as a proportion δ1 of the17
vehicle velocity. Given a specific δ1, faster vehicles observe greater uncertainty in acceleration18
determination. Here, we simulate an attack scenario where δ1 ∼ N (µ1,σ1). Traffic states under19
multiple µ1’s from -0.09 to -0.01 with intervals of 0.01 and a fixed σ1 = 0.005 are evaluated. ACC20
is dependent on the relative velocity and headway between the follower and the leader derived from21
LiDAR measurements Boddupalli et al. (19). Hence, this type of intra-vehicle communication22
attack can be regarded as attacking on the LiDAR measurements.23
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Impacts of cyberattacks1
It is beneficial to understand how cyberattacks will affect traffic externalities. Thus, in Figure 11,2
we provide the contour plots of the metrics evaluating the pedestrian risk exposure, noise emission,3
fuel consumption, and exhaust emissions, respectively. In particular, pedestrian risk is measured by4
an enhanced Routledge indicator, which describes the probability of a vehicle hitting a pedestrian5
under certain congestion conditions if the pedestrian crosses the road randomly. We refer readers6
to (14) for the derivation of this indicator, as well as the detailed calculation methods for the other7
three metrics. Note that we have to make δ1 in Equation (36) a constant in each attacking scenario8
in order to draw these contours accurately. Figure 11a offers the contour plot of pedestrian risk,9
which reduces as the attack intensity (δ1) and proportion (p) increase. Additionally, the contour10
lines are more vertical in the upper-right part, while they are more horizontal in the lower-left11
part. This implies that when |δ1| is small and p is large, altering δ1 can lead to more obvious12
changes in pedestrian risk exposure. In contrast, the risk exposure is more sensitive to p when |δ1|13
is large and p is small. The contours of traffic noise exposure present a similar shape as those of14
pedestrian risk. The only difference lies in the density of contour lines. In Figure 11b, the distance15
between every two neighboring lines remains nearly the same across the investigated range of16
parameters. This suggests that any changes at any point will result in a similar influence on the17
noise exposure. However, the contours of fuel consumption are almost straight lines, indicating18
that the sensitivities to δ1 and p are very close. Yet, the increase of contour density from the small19
value area to the large value area implies that the impact of the alterations in these two parameters20
is more significant when their original values are large. On the other hand, since exhaust emissions21
are estimated by using fuel consumption data, the contours of different kinds of emissions will22
also present a similar shape to those of fuel consumption. Figure 11d shows the contours of CO223
emission as an example, while the other emissions, such as CO, PMx, and NOx, are similar.24

Figure 10 compares the MFD dynamics (aggregated every five minutes) under different25
configurations of the cyberattack under consideration. Each subplot in the first row compares26
the MFDs of the scenarios with different percentages of attacked vehicles under the same attack27
intensity, i.e., p’s are different but µ1’s are the same. In contrast, each subplot in the second row28
compares the MFDs of the cases where the percentages of attacked vehicles are the same but are29
attacked differently, i.e., p’s are the same but µ1’s are different. Clearly, when p is small, it is30
hard to recognize the difference in MFDs compared to the one free of cyberattacks. Surprisingly,31
when the absolute value of µ1 is also small, such as Figure 10(a), we can even observe a slight32
improvement in MFD. This implies that adding appropriate driving heterogeneity can improve33
traffic efficiency. However, the improvement is very limited, and it will disappear as the attacking34
intensity increases. Moreover, the MFDs of scenarios with high attacking penetration demonstrate35
clear reductions, regardless of the attacking intensity. From the second row of subplots, it is hard36
to differentiate the MFDs under different µ1 when p = 0.1. Their differences become clearer as p37
increases.38

Since the urban traffic resilience indicator adopted in the study is derived from MFD dy-39
namics, we further compare the traffic resilience losses across different scenarios in Figure 12.40
Three demand scenarios are considered, with small, medium, and large demand scenarios repre-41
senting the original demand, 1.2, and 1.5 multiples of the original demand, respectively. The results42
are in line with the findings from Figure 10. The impact of |µ1| is minor when the proportion of43
attacked vehicles is small, with resilience losses remaining similar across the first two cyberattack44
scenarios regardless of the demand level. However, as the proportion of attacked vehicles increases45
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FIGURE 10: MFD comparison under different cyberattack scenarios.

to 90%, traffic resilience losses escalate by about three times as |µ1| increases from 3% to 9%.1
To summarize, cyberattacks hold the potential of deteriorating fuel consumption and ex-2

haust emissions. Moreover, they can also significantly reduce MFD dynamics by causing trans-3
portation disruptions and impeding traffic efficiency, thereby deteriorating urban traffic resilience.4
Although they can improve the pedestrian risk and noise exposure, the improvement is marginal5
compared to the negative effects. Therefore, it is imperative to validate the resilience of the pro-6
posed dynamic capacity allocation against cyberattacks.7

Control performance under disruption scenarios8
As introduced in Section 4.3.1, the traffic resilience indicator is calculated based on the deviations9
in trip completion rates. To assess the resilience of the proposed dynamic network capacity allo-10
cation control to cyberattacks, we compare the trip completion rates achieved under this control11
with those obtained from the baseline control configuration, i.e., the one with the current lane al-12
location plan and optimized static traffic signal splits. Three hours of simulations are run, with13
the first and the last half an hour as the simulation warm-up and dissipation periods, respectively.14
Traffic dynamics were aggregated every five minutes, resulting in 24 time intervals. To account15
for simulation randomness in traffic assignment, we averaged the results across 10 replications and16
calculated the corresponding standard deviations. Similar to Figure 12, four different cyberattack17
scenarios are considered. While all simulations were conducted at the small demand level, similar18
patterns were observed in medium and high demand scenarios. We can see from each subplot19
that trip completion rates under the SINDy-MPC solution are lower than those under the baseline20
control before the 8th interval. However, after this point, the SINDy-MPC solution consistently21
outperforms the baseline control. Overall, the SINDy-MPC framework improves trip completion22
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FIGURE 11: Impact of cyberattacks on traffic externalities.

p = 0.1
1 = 0.03

p = 0.1
1 = 0.09

p = 0.9
1 = 0.03

p = 0.9
1 = 0.09

Cyberattack configuration

0

200

400

600

800

1000

1200

1400

1600

Tr
af

fic
 re

sil
ie

nc
e 

lo
ss

 (v
eh

)

Small demand
Medium demand
Large demand

FIGURE 12: Impact of cyberattacks on urban traffic resilience.
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rates in all scenarios, demonstrating greater resilience to cyberattacks. Nonetheless, the degree1
of improvement varies across scenarios. Specifically, the improvements in the two scenarios with2
µ1 =−0.03 are greater than the two with µ1 =−0.09. This suggests that the resilience of the pro-3
posed control scheme is subject to the intensity of the attack. Additionally, in the scenario where4
p = 0.9 and µ1 =−0.09, the trip completion rate curves are significantly lower than in other sce-5
narios, indicating more substantial traffic resilience losses. This observation is consistent with the6
findings presented in Figure 12.7
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FIGURE 13: Comparison of trip completion rates between the baseline control and the SINDy-
MPC solution under different cyberattack scenarios.

CONCLUSIONS8
This study investigated the dynamic network capacity allocation control problem in the era of9
CAVs, in which traffic signal splits and lane allocation plans were optimized to improve traffic10
efficiency in real time. The development of this control scheme was motivated by the common tidal11
traffic phenomenon observed in urban transportation networks, resulting from the spatiotemporal12
variations in travel demand. Its realization was dependent on a SINDy-MPC framework, which13
integrated a sparse yet accurate model identified through the SINDy technique to estimate system14
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dynamics, coupled with MPC for decision-making. The proposed control scheme was evaluated1
on a large-scale real network in the city center of Munich, Germany. The microscopic SUMO2
traffic simulator was utilized to validate the effectiveness of the control decisions.3

Experiments demonstrated that selecting representative links to estimate the overall traf-4
fic state based on correlation was superior to methods based on random selection, traffic volume,5
and traffic stability. This approach resulted in a smaller RMSE and fewer selected links, reducing6
the system dynamics’ dimensionality. The identified system by SINDy was found to be sparse in7
the dynamic expression of each link compared to the number of terms involved in the candidate8
library, while maintaining accuracy in terms of RMSEs. We evaluated the performance of the9
proposed control scheme in the contexts of deterministic system and stochastic system models, as10
well as a complex simulation model. Results from the deterministic and stochastic system mod-11
els illustrated system stability in the presence of no stochasticity or Gaussian noise disturbances.12
Moreover, as evident by simulations, the proposed network capacity control effectively reduced13
traffic imbalances on the associated roads and improved overall traffic efficiency.14

Further, considering the vulnerability of CAVs to cyberattacks, we systematically assessed15
the impacts of such attacks from the perspectives of externalities, MFD dynamics, and traffic re-16
silience. The impacts on traffic safety, environmental conditions, fuel consumption, and exhaust17
emissions were not negligible. We found that although cyberattacks were imposed on the demand18
side, the shape of MFD also observed a degradation. The impact of the proportion of attacked ve-19
hicles was more significant than that of the intensity of the attack. This finding was also validated20
by the comparison of traffic resilience losses under different cyberattack configurations. Specifi-21
cally, the impact of the attack intensity is minor when the proportion of attacked vehicles is small,22
with resilience losses remaining similar across different intensity levels regardless of the demand23
level. However, as the proportion of attacked vehicles increases, traffic resilience losses escalate24
significantly as the attack intensity increases. We then applied the proposed control scheme to25
these cyberattack scenarios, demonstrating its robustness and resilience. The result suggested that26
the resilience of the proposed control scheme is subject to the intensity of the attack.27

Future research can focus on integrating dynamic capacity allocation control decisions into28
reinforcement learning methods, given their ability to model complex relationships. How to design29
the reinforcement learning procedure to manage the high dimensionality issue of the problem will30
be the key challenge of the work. Additionally, since the case study presented here integrated an31
unchanged SINDy model into the MPC framework, further improvement could involve develop-32
ing an alternating optimization procedure to determine optimal control decisions and update the33
SINDy surrogate model. In this case, special treatments will be needed to enhance computational34
efficiency.35
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