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ABSTRACT1
Missing values are prevalent in spatio-temporal transport data, undermining the quality of data-2
driven analysis. While prior works have demonstrated the promise of tensor completion methods3
for imputation, their performance remains limited for complicated composite missing patterns.4
This paper proposes a novel imputation framework combining tensor decomposition and rank5
minimization, which is effective in capturing key traffic dynamics and eliminates the need for6
exhaustive rank tuning. The framework is further supplemented with time series decomposition to7
account for trends, spatio-temporal correlations, and outliers, with the intention of improving the8
robustness of imputation results. A proximal ADMM algorithm is designed to solve the resulting9
multi-block nonconvex optimization efficiently. Experiments on four real-world transport datasets10
suggest that the proposed framework outperforms state-of-the-art imputation methods, especially11
in the context of complex missing patterns with high missing rates. These results underscore the12
potential benefits of incorporating temporal characteristics for more reliable imputation. Addi-13
tionally, a sensitivity analysis provides initial evidence of the model’s robustness in relation to14
hyperparameters.15

16
Keywords: Missing data imputation, tensor completion, tensor decomposition, rank minimization,17
ADMM18
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INTRODUCTION1
Transport data, enriched by contemporary data collection techniques and open data initiatives,2
propels a multitude of applications including traffic forecasting, traffic state estimation, and traffic3
flow analysis (1, 2). These data-driven studies have enabled improved decision-making for the4
efficiency, safety, and sustainability of urban transport systems. However, the integrity of transport5
data is often undermined by missing values, particularly in time series data like traffic state, public6
transport ridership, and shared mobility usage. Even with the progression of transportation man-7
agement systems, the issue of missing data is still not rare. For instance, a considerable number8
of traffic sensors with over half of their readings missing were reported by Laña et al. (3), where9
only 11% of sensors in the study area demonstrated more than 98% data completeness. Another10
evidence from bicycle volume data indicated that only 54% of the data is viable for use (4). These11
issues pose significant challenges for time series modeling, leading to a compromise in terms of12
analysis and prediction accuracy (5). Hence, devising accurate data imputation methods becomes13
essential to address the challenges of missing values in transport data.14

Transport data can be corrupted for various reasons, including communication failure, sen-15
sor failure, infrastructure upgrading, and database failure, resulting in different missing patterns.16
Notably, missing data does not necessarily indicate the absence of entries. As summarized in17
AASHTO Guidelines for Traffic Data Programs, erroneous records, such as repeated, extreme, or18
error-coded values, also represent missing data as they are unusable for further analysis (6). One19
common missing data scenario in transport pertains to occasional random missing entries, which20
can generally be addressed by simple methods like temporal interpolation and spatial weighting.21
However, structured missing entries, characterized by missing data in the form of spatial and tem-22
poral clusters, pose more significant challenges for imputation methods. It was early emphasized23
by Smith et al. (7) that missing entries in transport data can happen in both temporal and spatial24
domains, with varying time spans of missing values.25

A wide collection of transport data is spatio-temporal data, which can be naturally orga-26
nized as matrices spanning space and time. The periodicity of transport time series further allows27
wrapping the temporal dimension into higher number of dimensions like time-of-the-day and day-28
of-the-week. Given such inherent tensorial structure, tensor/matrix decomposition and completion29
have emerged as one of the most promising solutions for transport data imputation, offering better30
imputation accuracy and higher computational efficiency over other methods like simple inter-31
polation and statistical learning. Initially developed within the domain of computer vision and32
recommendation system (8, 9), these techniques are capable of modeling intricate multilinear rela-33
tionship and filling in missing data by exploiting of the low-rank property of transport data. They34
have proven effective for understanding urban mobility dynamics (10) and improving imputation35
accuracy across various missing patterns (11–13).36

Nevertheless, the performance of many existing tensor-based imputation methods are still37
limited when applied on spatio-temporal transport data with complex missing patterns. Similar to38
the cases in image recovery (14), some imputation methods have been found to falter faced with39
composite missing patterns, especially when spatial and temporal missing happens simultaneously.40
Additionally, data outliers—especially extreme values—can incur instability in imputation results,41
while variations in traffic dynamics due to supply-side changes, such as fleet expansion or infras-42
tructure damage, may also adversely affect imputation accuracy. To develop an effective imputa-43
tion method for practical transport data, a significant challenge lies in enhancing the robustness44
to handle various missing patterns, outliers, and temporal pattern shifts. As such, bridging the45
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gap between existing tensor methods and the multifaceted real-world complexity remains an open1
research problem.2

Literature Review3
The effective imputation of missing values in transport data primarily revolves around exploiting4
temporal patterns and spatial similarities. These ideas are often realized through interpolation of5
observed values, fitting a statistical learning model, and optimizing a priori objective. A broad6
range of methodologies adhering to these ideas have been explored over the years, falling into7
three general paradigms: simple interpolation, machine learning, and tensor-based methods.8

Typical simple interpolation methods include historical averaging, and weighted averaging9
across neighboring time periods and sensors (7). While straightforward to implement, these meth-10
ods are only effective for isolated missing entries due to their strong dependency on historical or11
surrounding data. The imputation quality can be improved via parametric models like autoregres-12
sive models (15), which can relieve the difficulty in determining weights for averaging and reduce13
the impacts of outliers.14

To address complicated missing patterns, recent research resort to machine learning models15
because of their strong predictive power. One line of research leverages clustering to extract tem-16
poral patterns, thereby facilitating missing entry imputation (16). Clustering can also be integrated17
with classification models to counteract its limitation with whole-day missing scenarios (3). The18
importance of explicit temporal modeling, e.g., the Prophet model (17) and Gaussian process with19
a periodical kernel (18), is later acknowledged for handling complex missing scenarios. However,20
these methods can become limited for either complicated workflows or high computational com-21
plexity. Hence, deep learning, which has seen significant success in traffic forecasting, has been22
recently introduced for imputation. Noteworthy methods include denoising stacked autoencoder23
(19), graph convolutional neural network (20), and attention mechanism (21). The common idea24
behind them is to encode the spatio-temporal patterns in latent spaces or a memory module. How-25
ever, generating appropriate training samples is non-trivial. Most deep learning-based models use26
a sliding window strategy to prepare samples, which are short time series segments ranging from27
15 minutes to one day. Such small window sizes restrict the contextual information input to the28
model, limiting their applicability in scenarios with longer missing periods.29

Tensor-based methods provide a streamlined imputation formulation by exploiting the in-30
herent low-rank property and multi-dimensional relationships present in transport data. One ap-31
proach is tensor decomposition, which breaks transport data into several latent factors; it degener-32
ates into matrix decomposition when the transport data is two dimensional (12). Each decomposed33
factor encodes the information of a specific dimension, indicating key time series patterns and cor-34
relations among sensors. Missing value imputation can be realized by minimizing the reconstruc-35
tion error from factors (11) or maximizing the posterior likelihood in the Bayesian context (13).36
Regularization can also be applied to enforce spatial and temporal smoothness (22). However, a37
significant limitation of tensor decomposition is the need for predefined ranks as hyperparameters,38
which are hard to determine in practice. Tensor completion, on the other hand, seeks a low-rank39
approximation of transport data by directly minimizing the rank of the reconstructed tensor. Given40
that tensor rank is non-differentiable, many studies focused on finding a viable rank approximation,41
e.g., truncated nuclear norm (23), Schatten-p norm (24), and tubal rank (25). However, tensor rank42
and its approximations are all permutation invariant; thus, the imputation may fail in the absence43
of time series modeling. Integrating tensor completion with autoregressive models has proven to44
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be an effective solution to this problem (26).1

Objectives and Contribution2
This study, following the paradigm of tensor-based method, aims to design a new transport data im-3
putation framework based on tensor decomposition, which is robust for various composite missing4
patterns. Our contribution can be summarized into the following points:5

• The framework leverages tensor decomposition techniques combined with rank mini-6
mization, effectively eliminating the need for predefined ranks and enhancing the accu-7
racy of imputation.8

• To account for outliers and temporal pattern shifts, the framework is embedded with a9
time series decomposition model, enabling effective modeling of temporal evolution in10
transport data.11

• An improved alternating direction method of multiplier (ADMM) algorithm is designed12
to solve the multi-block nonconvex separable problem in the proposed framework.13

This paper is structured as follows. In Section 2, we present the fundamentals of tensors and14
establish the problem definition. Section 3 details our novel transport data imputation framework.15
In Section 4, we present the experimental results, demonstrating the effectiveness of our approach.16
Finally, in Section 5, we provide conclusion and outline potential future research directions.17

PRELIMINARIES18
Notations19
In this paper, scalars are represented by italic letters, vectors by boldface lowercase letters, matrices20
by boldface uppercase letters, and tensors by calligraphic letters, for example, x, xxx, XXX , and X ,21
respectively.22

A tensor with k modes, also referred to as a k-way tensor or a k-dimensional tensor, is23
represented as X ∈ RN1,N2,...,Nk , where Nn indicates the size of the n-th mode. Subscripts added to24
a tensor, such as xi1i2...ik , indicate the (i1, i2, . . . , ik)-th entry of the tensor.25

In reference to the transport data discussed in this paper, we begin with a generic matrix26
representation, XXX ∈ RNs×Nt , that includes a time series of measurements over a specific period27
gathered from a range of sensors. Here, Ns represents the number of sensors and Nt refers to the28
number of time slots. This matrix structure can be reorganized into a tensor structure by reshaping29
along the temporal mode. For example, a four-way tensor, X ∈RNs×Nw×Nd×Nm , can be obtained by30
reshaping the temporal mode into weeks and days-of-the-week, where Nw, Nd , and Nm indicates31
the number of weeks, days in a week, and time slots in a day, respectively. It is worth noting that,32
when Nt is not divisible by the product of Nw, Nd and Nm, the matrix can be padded with null values33
in the temporal mode to allow proper reshaping. Also, more temporal modes, such as month-of-34
the-year, can be incorporated to transform the matrix into a higher-order tensor when dealing with35
data spanning a long time period.36

Tensor Basics37
A tensor can be converted from and to a matrix through the folding and unfolding operations along38
its n-th mode,39
X = foldn(XXX (n);N1, . . . ,Nk) ∈ RN1,N2,...,Nk , (1)40

XXX (n) = unfoldn(X ) ∈ RNn×(N1×···×Nn−1×Nn+1×···×Nk). (2)41
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Similar to a matrix, a tensor can be characterized by a range of different norms. The L11
norm of a tensor ∥·∥1 can be defined as the absolute sum of all its entries; and the Frobenius norm2
of a tensor ∥·∥F can be defined as the square root of the squared sum of all its entries,3

∥X∥1 = ∑
i1,i2,...,ik

|xi1,i2,...,ik |, ∥X∥F =
√

∑
i1,i2,...,ik

x2
i1,i2,...,ik . (3)4

5
Tensor decomposition refers to decomposing a tensor into several factors. In this paper, we6

focus on Tucker decomposition, which can factorize a tensor into the k+1 components, including7
a core tensor and k factor matrices (27),8
X = G×1 UUU1×2 · · ·×k UUUk. (4)9
where G ∈ Rr1×···×rk is the core tensor and UUUn ∈ RNn×rn(n ∈ [k]) are the factor matrices, respec-10
tively. r1, . . . ,rk are the rank of factor matrices. The operator ×n is the n-mode product.11

Given an arbitrary tensor A ∈ Rr1×···×rk and a matrix UUU ∈ RNn×rn , their n-mode product,12
denoted by B ∈ Rr1×···×rn−1×Nn×rn+1×···×rk , can be defined by:13
B =A×n UUU ⇔B = foldn(UUUAAA(n)). (5)14

The definition can also be written using an element-wise expression, bi1...in−1 jin+1...ik =15
∑in ai1...iku jin . Likewise, the Tucker decomposition can be written element-wisely:16

xi1...ik =
r1

∑
j1=1
· · ·

rk

∑
jk=1

g j1... jku1,i1 j1 · · ·uk,ik jk . (6)17

One natural definition of tensor rank coming with Tucker decomposition is the tensor n-18
rank, defined as the rank of n-mode unfolding matrix of a tensor. The Tucker rank is then defined19
as the set of n-rank of all unfolding matrices (rank(1)(X ), rank(2)(X ), . . . , rank(k)(X )), where20
rank(n)(X ) = rank(XXX (n)). (7)21

Problem Statement22
The main goal of transport data imputation is to estimate the missing values in a transport tensor23
using the observed values. Formally, given an incomplete tensor YΩ = Y⊙Ω ∈RN1×···×Nk , where24
Y is the unknown ground truth tensor and Ω ∈ {0,1}N1×···×Nk is the binary mask tensor, the task25
is to obtain a restored tensor X ∈ RN1×···×Nk .26

IMPUTATION FRAMEWORK27
In this section, we first present the idea of using a time series decomposition model as the underly-28
ing temporal model of transport data. Then, based on the time series decomposition, we propose a29
new optimization model combining tensor decomposition and rank minimization to enable robust30
imputation of missing values.31

Time Series Decomposition32
In order to effectively model the temporal evolution of time series in transport data, an additive time33
series decomposition is formulated and later embedded in the proposed framework. We base the34
rationale behind the decomposition on the primary characteristics of transport data derived from35
the example traffic volume data collected by a loop detector, as shown in Figure 1. (i) An apparent36
drop in traffic volume can be noticed around Aug 15, 2019, which is not observed elsewhere. This37
may signify a long-term supply-side change, such as road construction. Another sharp volume38
drop is evident around Oct 7, 2019, which quickly recovers to the usual level, possibly due to a39
temporary lane closure. (ii) Daily periodicity can be easily observed from the plot. (iii) A few40
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FIGURE 1: An example time series of traffic volume data collected by a loop detector in London.
The blank spaces in the figure indicate missing values.

spurious extreme values can be seen around Aug 11, 2019 and Aug 14, 2019, which need to be1
carefully handled by the imputation model.2

Based on the observations above, we decompose the time series into three components,3
namely trend, seasonality and error. The trend component assumes a locally constant trend to4
provide a stable prior for the imputation. The seasonal component captures the periodicity of the5
time series and the correlations among sensors, aligning with the low rank property of the transport6
data tensor. The error component accounts for the occasional outliers in the time series. To sum7
up, a transport data tensor can be expressed as the sum of the following three components,8
X = T +S+E , (8)9
where T , S, and E denote the trend tensor, seasonality tensor, and error tensor respectively.10

An illustration of the time series decomposition is demonstrated in Figure 2. The trend11
tensor is established through a preliminary step of changepoint detection, such that major changes12
in temporal evolution, e.g., the volume drop in Figure 1, can be identified. In changepoint detec-13
tion, we hold the assumption that changepoints occur independently across sensors. Therefore,14
the tensor is first unfolded back to a matrix, and changepoint detection is performed on time se-15
ries of each sensor individually. The locations of changepoints in time series are examined using16
the pruned exact linear time (PELT) algorithm (28), where the homogeneity of each segment is17
measured using the Gaussian kernel function (29). The identified changepoints are then used to18
partition the time series into a sequence of segments. Within each segment, we assume a constant19
trend component, in an effort to enhance the robustness of imputation results.20

The seasonal component of the time series decomposition is managed using a Tucker de-21
composition model, which factorizes the low-rank seasonal tensor into a core tensor and factor22
matrices, allowing us to effectively capture the spatio-temporal correlations in the data, including23
the temporal periodicity and cross-sensor correlations. Details of addressing Tucker decomposi-24
tion will be explained in the subsequent subsection. Finally, the additional error component is25
responsible to manage the occasional outliers in the time series, thereby mitigating their impacts26
on the imputation results.27

Optimization Problem28
To obtain a proper imputation of the missing values, the objective of tensor-based methods is often29
either minimizing the reconstruction error in the case of tensor decomposition, or minimizing30
the tensor rank when working on the full-sized tensor. Based on the time series decomposition31
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FIGURE 2: An overview of the time series decomposition. Note that tensors are illustrated as 3-
dimensional cubes merely for demonstration purposes. They can be of higher modes to incorporate
higher dimensional information.

model (Equation 8), one may want to directly minimize the error component because of the tensor1
decomposition. However, as reviewed in Introduction, the difficulty in determining appropriate2
ranks for Tucker decomposition is one of its major limitations. It is reasonable to apply additional3
penalty on large Tucker ranks in order to relieve the burden of rank determination. Additionally, it4
was suggested by Goulart et al. (30) that imposing parsimony on the core tensor can help alleviate5
the adverse effects of misspecified ranks. Thus, the following objective is designed to tackle the6
aforementioned limitation,7

f ({UUU i},G,E) = ∥E∥1 +µ∥G∥1 +λ

k

∑
i=1

rank(UUU i)+
ξ

2

k

∑
i=2
∥DDDiUUU i∥2

F . (9)8

The objective function consists of four components, including the L1 norm of the error9
term, the L1 norm of the core tensor, the ranks of factor matrices, and the total variation (TV)10
regularization. The L1 regularization of both the error term and the core tensor aims to obtain a11
sparse solution. The last TV regularization term aims to stabilize the tensor completion result by12
applying a smoothness prior on factor matrices (31) with the help of the difference matrix:13

DDDi =


0 0 · · · 0 0
−1 1 · · · 0 0
0 −1 · · · 0 0
...

... . . . ...
...

0 0 · · · −1 1

 ∈ RNi×Ni, (10)14

In addition, the TV regularization is only imposed on the temporal factors, as the first mode, i.e.,15
the mode of sensors, is not necessarily smooth in the local neighborhood.16

Most tensor completion methods based on rank minimization aim to minimize the sum of17
the ranks of all unfolding matrices, i.e., ∑i rank(SSS(i)) (8, 23, 24). However, with tensor decom-18
position in the optimization problem, optimizing over unfolding matrices introduces additional19
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difficulty in designing solution algorithm. To circumvent this issue, we directly optimize over1
the sum of the ranks of all factor matrices, denoted as ∑i rank(UUU i), which has been shown to be2
equivalent to minimizing the sum of ranks of unfolding matrices (32).3

To ensure the objective function is differentiable, a smooth surrogate for matrix rank is nec-4
essary (24, 33). Given that the matrix rank is equal to the number of non-zero values of its singular5
values, approximations are usually designed in the direction of finding a better surrogate for the L06
norm. Compared with nuclear norm, which is the convex envelop of matrix rank, nonconvex surro-7
gates, such as truncated nuclear norm and Schatten-p norm, have been shown to provide superior8
approximations. In our formulation, we employ the γ-norm for a better approximation,9

∥UUU∥
γ
= ∑

i

(1+ γ)σi(UUU)

γ +σi(UUU)
, (11)10

where σi(UUU) denote the i-th singular value of factor matrix UUU , and γ is a shape parameter.11
Substitute the matrix rank in Equation 9 by the γ-norm above, and the complete optimiza-12

tion problem can be formulated as,13

min
{UUU i},G,E ,ccc,X

∥E∥1 +µ∥G∥1 +λ

k

∑
i=1
∥UUU i∥γ

+
ξ

2

k

∑
i=2
∥DDDiUUU i∥2

F (12)14

s.t. X = ∑
i

ci fold1(ΨΨΨi)+G×1 UUU1×2 · · ·×k UUUk +E (13)15

XΩ = YΩ (14)16
where the first constraint is the time series decomposition of the transport data tensor, as outlined in17
Equation 8, where T = ∑i ci fold1(ΨΨΨi) and S = G×1 UUU1×2 · · ·×k UUUk. The trend term T connects18
the changepoints identified by the PELT algorithm with the decision variables ccc. Each time series19
segment partitioned by changepoints is assigned a variable ci, which represents the corresponding20
long-term trend. Additionally, a binary masking matrix, ΨΨΨi ∈ {0,1}Ns×Nt , is aligned with each21
segment. The seasonal term S here is substituted by the Tucker decomposition. The last constraint22
ensures that the values of all observed entries are identical to the imputation results.23

SOLUTION ALGORITHM24
While the optimization problem above with two equality constraints can be solved using gradient25
descend by absorbing the constraints into the objective function, it can be computationally ineffi-26
cient. Fortunately, it is feasible to separate the objective as the sum of several decoupled functions,27
allowing acceleration with ADMM (34). The basic idea behind ADMM is to decompose the prob-28
lem into smaller sub-problems, each of which can be solved independently and iteratively.29

Problem Separation30
To enable successful separation, auxiliary variables {VVV i}k

i=1 are introduced to decouple the third31
and last components in the objective, resulting in the modified problem,32

min
{UUU i,VVV i},G,E ,ccc,X

∥E∥1 +µ∥G∥1 +λ

k

∑
i=1
∥VVV i∥γ +

ξ

2

k

∑
i=2
∥DDDiUUU i∥2

F (15)33

s.t. X = ∑
i

ci fold1(ΨΨΨi)+G×1 UUU1×2 · · ·×k UUUk +E (16)34

XΩ = YΩ (17)35

UUU i =VVV i (18)36
The problem is now separable with four decoupled blocks in the objective. Denote the37
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Lagrangian multipliers byM and ΓΓΓ, the augmented Lagrangian is given as follows:1

L({UUU i,VVV i,ΓΓΓi},G,E ,ccc,X ,M) = ∥E∥1 +µ∥G∥1 +λ

k

∑
i=1
∥VVV i∥γ +

ξ

2

k

∑
i=2
∥DDDiUUU i∥2

F2

+
ρ

2
∥X −∑

i
ci fold1(ΨΨΨi)−G×1 UUU1×2 · · ·×k UUUk−E+M∥2

F (19)3

+
k

∑
i=1

ρ

2
∥UUU i−VVV i +ΓΓΓi∥2

F .4

Proximal ADMM Algorithm5
While the problem has become separable after modification, the convergence of standard ADMM,6
which is initially designed for two-block problems, is not guaranteed when extended problems7
with a higher number of blocks (35). To overcome this challenge, we incorporate an additional8
proximal term in the sub-problems, which has been demonstrated to effectively resolve this issue9
(36, 37).10

Solving Sub-problem of UUU i11
We begin with the first factor matrix UUU1, and the sub-problem can be described as:12

UUU (t+1)
1 = argmin

UUU1

L({UUU (t)
i ̸=1,VVV

(t)
i ,ΓΓΓ

(t)
i },UUU1,G(t),X (t),E (t),ccc(t),M(t))+

η

2
∥UUU1−UUU (t)

1 ∥
2
F , (20)13

where η is a penalty parameter of the proximal term. All variables excluding UUU1 are fixed, resulting14
in a convex problem. The solution can be easily derived by letting the gradient be zero:15

UUU (t+1)
1 = (ρZZZ(1)PPP1(GGG

(t)
(1))
⊤−ρQQQ1−ηUUU (t)

1 )(ρGGG(t)
(1)PPP

⊤
1 PPP1(GGG

(t)
(1))
⊤− (ρ +η)III)−1, (21)16

where PPP1 = UUU (t)
2 ⊗ ·· ·⊗UUU (t)

k and QQQ1 = VVV (t)
1 −ΓΓΓ

(t)
1 . The operator ⊗ here denotes the Kronecker17

product.18
Similarly, the sub-problems of other factor matrices, which involve an additional TV regu-19

larizer, can be simplified to solving a Sylvester equation:20
AAAUUU i +UUU iBBB = RRR, (22)21
where AAA = ρIII +ξ DDD⊤i DDDi, BBB =−ηIII−ρGGG(t)

(i)PPP
⊤
2 PPPi(GGG

(t)
(i))
⊤, and RRR = ρQQQi +ηUUU (t)

i −ρZZZ(i)PPP2(GGG
(t)
(i))
⊤.22

Herein, ZZZ(i) = XXX (t)
(i) − TTT (t)

(i) − EEE(t)
(i) + MMM(t)

(i), PPPi =
⊗

j ̸=iUUU
(t)
j , and QQQi = VVV (t)

i − ΓΓΓ
(t)
i . The Sylvester23

equation can be solved using the Bartels-Stewart algorithm (38).24

Solving Sub-problem of VVV i25

Let WWW i =
1

ρ+η
(ρ(UUU (t+1)

i +ΓΓΓ
(t)
i )+ηVVV (t)

i ), the VVV i sub-problem can be simplified as:26

VVV (t+1)
i = argmin

VVV i

λ

ρ +η
∥VVV i∥γ

+
1
2
∥VVV i−WWW i∥2

F , (23)27

where the objective is the sum of γ-norm and Frobenius norm.28
Note that non-convex problems in similar forms can usually be solved using various thresh-29

olding algorithms, such as soft thresholding and singular value thresholding (26, 30, 39). Here, we30
manage to solve this problem by relaxing it to a weighted ℓ1-minimization problem to make it31
easily tractable.32

Lemma 1. Let σi denote the i-th singular value of a matrix VVV . For any concave antimonotone33
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function g(·), the function h(VVV ,WWW ) = λ

ρ+η ∑
k
i=1 g(σi)+

1
2∥VVV −WWW∥2

F can be relaxed to:1

h̃(VVV ,WWW ) =
λ

ρ +η

k

∑
i=1

g(σ (t)
i )+∇g(σ (t)

i )(σ
(t)
i −σi)+

1
2
∥VVV −WWW∥2

F (24)2

=
λ

ρ +η

k

∑
i=1

∇g(σ (t)
i )σi +

1
2
∥VVV −WWW∥2

F . (25)3

With Lemma 1, the γ-norm can be relaxed to the weighted ℓ1-norm of VVV i. Then, the VVV i4
sub-problem can be solved by the weighted singular thresholding (WST) algorithm (39). Let the5
singular value decomposition (SVD) of WWW i be AAAΣΣΣBBB⊤, the update rule is given by,6

VVV (t+1)
i = AAAT λ

ρ+η
ωωω
(ΣΣΣ)BBB⊤, (26)7

where ωi = ∇g(σ (t)
i ) = ∇∥VVV i∥γ

= (1+ γ)γ/(γ +σ
(t)
i )2. The WST operator can be defined by8

T λ

ρ+η
ωωω
(ΣΣΣ) = diag((Σ j j− λ

ρ+η
ω j)+), and (·)+ = max(·,0).9

Solving Sub-problem of G10
Denote Z = X (t)−T (t)−E (t)+M(t), the sub-problem of G can be written as:11

G(t+1) = argmin
G

µ∥G∥1 +
ρ

2
∥G×1 UUU (t+1)

1 ×2 · · ·×k UUU (t+1)
k −Z∥2

F +
η

2
∥G−G(t)∥2

F . (27)12

Direct analysis with n-mode product is inconvenient. Hence, the objective of this sub-13
problem is rewritten as matrix operations using Equation 5. Let us define:14

φ(G) = (ρ∥G×1 UUU (t+1)
1 ×2 · · ·×k UUU (t+1)

k −Z∥2
F +η∥G−G(t)∥2

F)/(2µ), (28)15

ϕ(GGG(1)) = (ρ∥UUU (t+1)
1 GGG(1)PPP

⊤
1 −ZZZ(1)∥2

F +η∥GGG(1)−GGG(t)
(1)∥

2
F)/(2µ), (29)16

where PPP1 = UUU (t+1)
2 ⊗·· ·⊗UUU (t+1)

k . The tensors are unfolded along the first mode without loss of17
generality. The sub-problem can then be rewritten as a general ℓ1-minimization problem:18

G(t+1) = argmin
G
∥G∥1 +φ(G) ⇔ GGG(t+1)

(1) = argmin
GGG(1)

∥GGG(1)∥1 +ϕ(GGG(1)). (30)19

Considering that function ϕ(·) is differentiable and convex, the optimal solution can be20
given by the following soft thresholding operation (40):21

GGG(t+1)
(1) = sgn(HHH)⊙ (|HHH|−δ )+ , (31)22

where HHH = GGG(t)
(1)−δ∇ϕ(GGG(t)

(1)). We set the step size δ = 1/∥UUU t+1
1 ∥2∥PPP⊤1 ∥2 as the reciprocal of the23

Lipschitz constant of ∇ϕ(GGG(t)
(1)), as suggested by (41), where ∥ · ∥2 denotes the spectral norm. The24

gradient ∇ϕ(GGG(1)) can be computed based on Equation 29:25

∇φ(GGG(1)) =
ρ

µ
(UUU (t+1)

1 )⊤(UUU (t+1)
1 GGG(1)PPP

⊤
1 −ZZZ(1))PPP1 +

η

µ
(GGG(1)−GGG(t)

(1)). (32)26

Solving Other Sub-problems27
The E sub-problem is a standard ℓ1-minimization problem, which can be solved via soft threshold-28
ing (34). Denote S = G×1 UUU1×2 · · ·×k UUUk, the update rule for E is,29

E (t+1) = sgn(B)⊙
(
|B|− 1

ρ +η

)
+

, (33)30

where B = 1
ρ+η

(
ρ(X (t)−T (t)−S+M(t))+ηE (t)

)
, and ⊙ is the Hadamard product.31
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Closed-form solutions to the two convex sub-problems of ccc and X can both be easily ob-1
tained by letting gradient be zero:2

ccc(t+1) =
1

ρ +η

(
ρ

1
∥ΨΨΨi∥0

tr(III vec(foldi(ΨΨΨi)⊙ (X (t)−S−E (t+1)+M(t))))+ηccc(t)
)
, (34)3

X (t+1) =
1

ρ +η

(
ρ(T (t+1)+S+E (t+1)−M(t))+ηX (t)

)
. (35)4

Finally, the overall algorithm is concluded by Algorithm 1. Before updating variables, we5
first initializeX using historical average. Then, G and all UUU i are computed using higher-order SVD6
(27). The auxiliary variables VVV i are set identical to UUU i. Other variables, including E ,M and all ΓΓΓi,7
are initialized as zero.8

Algorithm 1 Proximal ADMM for Robust Transport Data Imputation

1: Input: Incomplete tensor YΩ ; missing mask Ω ; hyperparameters µ,λ ,ξ ,{ri},ρ,η ; conver-
gence threshold ε .

2: Output: Imputed tensor X .
3: Initialize primal variables and Lagrangian multipliers; set tolerance ∆← ∞; set t← 1.
4: repeat
5: for i← 1,k do
6: Solve sub-problem of UUU i using Equation 21 or Equation 22.
7: end for
8: for i← 1,k do
9: Solve sub-problem of VVV i using Equation 26.

10: end for
11: Solve sub-problem of G using Equation 31.
12: Compute seasonal component S ← G×1 UUU1×2 · · ·×k UUUk.
13: Solve sub-problem of E using Equation 33.
14: Solve sub-problem of ccc using Equation 34.
15: X̄ ← X . Solve sub-problem of X using Equation 35.
16: Update Lagrangian multiplierM←M+X −T −S−E .
17: for i← 1,k do
18: Update Lagrangian multiplier ΓΓΓi← ΓΓΓi +UUU i−VVV i.
19: end for
20: ∆←∥X −X̄∥2

F/∥X̄ ∥2
F .

21: until ∆ < ε

EXPERIMENT SETTINGS9
To evaluate the imputation performance of the proposed framework, four datasets are employed10
in this study. This section presents a detailed overview of the metadata and basic statistics of11
these datasets, as well as the preprocessing methods. Furthermore, we provide the details of the12
experimental settings, including the design of missing patterns, base models for comparison, and13
configuration of hyperparameters.14
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Data Description1
The datasets used in this study include one traffic speed data from Guangzhou (China), and three2
traffic volume data from London (UK), Madrid (Spain) and Melbourne (Australia), respectively1.3
To ensure the reliability of our analysis, we remove any traffic sensor data with less than 95%4
completeness, excluding time periods where all traffic detectors have no reading. For the traffic5
volume data, we select sensors located in the city centers, where typically experience higher traffic6
densities. Detailed metadata for all four datasets can be found in Table 1.7

TABLE 1: Metadata of Datasets

City # Sensor Duration Interval Measurement (Unit)
Guangzhou 209 Aug 1, 2016 — Sep 30, 2016 10 min Speed (km/h)
London 276 Jul 1, 2019 — Oct 13, 2019 15 min Volume (veh/15min)
Madrid 324 Jun 1, 2021 — Sep 13, 2021 15 min Volume (veh/15min)
Melbourne 313 Jun 1, 2020 — Sep 13, 2020 15 min Volume (veh/15min)

The singular values of the data matrices of all four cities are demonstrated in Figure 3.8
The dominance of large singular values across all datasets is evident, substantiating the rationality9
of exploiting the low-rank property for missing value imputation. Furthermore, for the proposed10
framework, the data matrices are organized into four-way tensors Y ∈ RNs×Nw×Nd×Nm with the11
structure of sensor×week×day-of-the-week× time-of-the-day.12

Missing Patterns13
Contrary to the majority of studies, which typically create individual missing scenarios for each14
pattern, our experiment comprises a composite missing mask by integrating four fundamental miss-15
ing patterns. The mixing-up of missing patterns can be expressed formally as:16
Ω = ΩBM⊙ΩRM⊙ΩDM⊙ΩTM, (36)17
where BM represents the blackout missing scenario, indicating an entire day with no observations18
from any sensor. The term RM is indicative of a random missing scenario, wherein data points19
are randomly absent. The labels DM and TM denote day missing and time-of-the-day missing,20
respectively, implying random missing data along the dimensions of day and time. Each of these21
missing patterns is subjected to two basic missing rates, namely, 10% and 30%. Consequently,22
this yields a total of 16 unique missing scenarios. The resultant composite missing rates, a product23
of the combination of these patterns, vary between 34% and 77%. The detailed list of all missing24
scenarios can be found along with the imputation performance in the next section.25

Base Models and Hyperparameters26
In our experiment, we compare the proposed imputation framework with several simple baselines27
and state-of-the-art tensor-based transport data imputation models.28

• Historical average (HA). HA is a naïve baseline that averages the observed values over29
each time-of-the-day.30

1The Guangzhou data is available at https://zenodo.org/record/1205229. The other three datasets
were gathered by the NeurIPS Traffic4cast 2022 Challenge at https://www.iarai.ac.at/traffic4cast/
challenge/, where the actual source data can be found at https://roads.data.tfl.gov.uk/, https://datos.
madrid.es/egob/catalogo/202468-0-intensidad-trafico, and https://discover.data.vic.gov.au/
dataset/traffic-signal-volume-data

https://zenodo.org/record/1205229
https://www.iarai.ac.at/traffic4cast/challenge/
https://www.iarai.ac.at/traffic4cast/challenge/
https://roads.data.tfl.gov.uk/
https://datos.madrid.es/egob/catalogo/202468-0-intensidad-trafico
https://datos.madrid.es/egob/catalogo/202468-0-intensidad-trafico
https://discover.data.vic.gov.au/dataset/traffic-signal-volume-data
https://discover.data.vic.gov.au/dataset/traffic-signal-volume-data
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FIGURE 3: Singular values of transport data from four cities

• Low-Rank Tensor Completion with Truncated Schattern-p Norm (LRTC-TSpN).1
LRTC-TSpN is the state-of-the-art transport data imputation model based on rank mini-2
mization paradigm (24).3

• Bayesian Gaussian CANDECOMP/PARAFAC Decomposition (BGCP). BGCP is a4
Bayesian model based on tensor decomposition paradigm, which extends the Bayesian5
probabilistic matrix factorization model (9) from matrix to tensor (13).6

• Temporal Regularized Matrix Factorization (TRMF). TRMF is a matrix decomposition-7
based model with an integrated autoregressive model for temporal modeling (42).8

• Low-Rank Autoregressive Tensor Completion (LATC). LATC is a rank minimization-9
based model with an integrated autoregressive model for temporal modeling (26).10

The hyperparameters of base models are set optimally through preliminary experiments.11
For LRTC-TSpN, we set norm parameter p = 0.9, truncation rate θ = 0.05, decay rate β = 2, and12
updating step size ρ = 10−5. For BGCP, we set tensor rank r = 30. For TRMF, we set tensor13
rank r = 10, coefficients λx = λw = λθ = 1, and updating step size η = 10−3. For LATC, we set14
truncation parameter r = 10, coefficient λ = 10−5, and updating step size ρ = 10−5. Finally, for15
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our model, we use tensor ranks rrr = {30,9,5,20}, coefficients µ = 0.1,λ = 0.1,ξ = 1.0, norm1
parameter γ = 0.01, and updating step size ρ = η = 10−4. While our method seems to have many2
hyperparameters, it will be shown later that the influence of hyperparameters on the imputation3
performance is minor.4

Two performance metrics, including an absolute metric (mean absolute error, MAE) and5
a relative metric (symmetric mean absolute percentage error, SMAPE), are used to quantify the6
imputation quality of the models, as defined below:7

MAE =
1

|I(Ω̃)| ∑
i∈I(Ω̃)

|xi− yi|, SMAPE =
1

|I(Ω̃)| ∑
i∈I(Ω̃)

|xi− yi|
|xi|+ |yi|

×100%, (37)8

where I(Ω̃) is the index set of testing entries given the mask Ω̃ .9

EXPERIMENT RESULTS10
In this section, the proposed imputation framework is first compared with base models on all11
evaluation scenarios. Additionally, the effect of hyperparameters on the imputation performance12
is examined through sensitivity analysis.13

Imputation Performance14
The imputation performance of all the models on 16 missing scenarios in the four cities are listed15
in Tables 2–5. On a general note, the proposed imputation framework achieves the lowest error in16
most of the scenarios, particularly, with higher advantage over base models in London and Madrid17
as well as scenarios with higher missing rates. It is worth noting that some state-of-the-art imputa-18
tion models, despite exemplary performance on individual missing scenarios substantiated by prior19
literature and empirical observations, can suffer from compromised reliability in the presence of20
intricate composite missing scenarios, resulting in imputation error higher than that of historical21
average.22

The performance of the proposed imputation framework is consistently better than base23
models on London and Madrid datasets. Larger missing rates usually result in lower imputation24
accuracy due to less observed information, conforming with the error values in the tables. Nev-25
ertheless, a smaller degradation can be observed for the proposed model, even faced with high26
missing rates, indicating its robustness over various missing patterns. For instance, the error gap27
between the best and the worse scenario in London for the proposed model is approximately 7.528
veh/15min. However, for LATC, the best base model in our experiment, the gap is around 11.429
veh/15min. The gap can be even larger for other models except historical average, which is robust30
but with higher imputation error.31

Compared with London and Madrid, the imputation error on Guangzhou and Melbourne is32
generally smaller; and the proposed model does not show discernible merit in scenarios with low33
missing rates, which could be attributed to less challenging traffic dynamics there. Clues can be34
found by recalling the distribution of singular values of all cities demonstrated in Figure 3, where35
the primary singular values of Guangzhou and Melbourne show stronger dominance compared36
with the other cities, implying higher volatility and more pattern changes in temporal dynamics37
(e.g., see Figure 1. Still, in these two cities, lower imputation error of the proposed model over38
base models can be noticed in scenarios with a high BM missing rate.39
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It can also be concluded from the results that explicit or implicit temporal modeling is1
crucial to robust imputation under complicated missing scenarios. For models without temporal2
modeling, such as LRTC-TSpN, the performance is not satisfactory in most evaluation scenarios3
due to the permutation invariance of tensor/matrix rank, which is an inherent limitation of the rank4
minimization paradigm. In other words, by minimizing the rank of a tensor, the solution remains5
unchanged regardless of the order of any two fibers (analogous to columns/rows of matrix in higher6
order). Consequently, when many fibers or complete slices are missing, imputation models are7
unable to correctly recover missing values unless equipped with a time series prior.8

Among all missing patterns, RM, DM and TM are missing patterns that are easier to handle.9
An increase in the missing rate regarding these missing patterns, as per the tables, incurs limited10
perturbations in terms of the errors in most cases. In comparison, most models are more sensitive11
to changes in the missing rates of BM. Although models like TRMF, BGCP, and LATC are all12
embedded with time series models, they still suffer from discernible performance degradation or13
instability during imputation.14

Sensitivity Analysis15
While the proposed imputation framework outperforms base models in terms of accuracy and16
robustness, one may question its practical feasibility due to the requirement of tuning more hy-17
perparameters. A sensitivity analysis was first conducted specifically focusing on tensor ranks for18
Tucker decomposition, as demonstrated in Figure 4.19

In general, most rank configurations do not exert a significant impact on the imputation20
error, showing an observable degree of consistency. Minor deviations do exist, however, the overall21
performance remains comparably stable against base models. There are also very few exceptions,22
where increases in imputation error can be noted, e.g., small rank values in Guangzhou data. This is23
possibly because of under-fitting with small rank values, which may limit the model from capturing24
all necessary details for accurately recovering the traffic dynamics. Therefore, in practice, a trade-25
off between quality and efficiency is needed for practical application. Nonetheless, thanks to the26
additional rank minimization, the risk of over-fitting for selecting a large rank value is minimized,27
which greatly relieves the burden of rank tuning compared with other tensor decomposition-based28
models.29

Further sensitivity analysis was performed on other model parameters, encompassing co-30
efficients µ,λ ,ξ and the norm parameter γ . In general, these hyperparameters do not exert a31
substantial effect on the imputation error, with the exception of the coefficient µ . However, the32
impact of µ on imputation error is as minor as other hyperparameters when it is less than 1. This33
analysis underscores the robustness of the proposed imputation framework in relation to hyper-34
parameter sensitivity, suggesting that avoiding overly small rank values and overly large µ will35
suffice to achieve optimal performance, while the influences of other parameters remain mostly36
invariant.37

CONCLUSION38
In this paper, we addressed the pervasive problem of missing values in transport data, which under-39
mines the integrity and efficacy of data-driven transportation analysis. As one of the most promis-40
ing solutions to this problem, current tensor-based methods are still limited in terms of robustness41
facing complicated composite missing patterns. To amend this gap, we proposed a novel tensor-42
based imputation framework that integrates a time series decomposition model to simultaneously43
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account for long-term trends, spatio-temporal correlations, and outliers in the data. The combina-1
tion of tensor decomposition and rank minimization also eliminates the need for exhaustive rank2
tuning in conventional tensor decomposition-based methods. In addition, an improved ADMM al-3
gorithm is developed to solve the resulting multi-block separable nonconvex optimization problem4
efficiently.5

Experiments on four real-world transport datasets demonstrate that the proposed framework6
can outperform state-of-the-art imputation methods, especially in the presence of complex missing7
patterns with high missing rates. The results highlight the importance of integrating temporal8
modeling in tensor completion framework. Sensitivity analysis also underscores the stability of9
our framework with respect to hyperparameter settings.10

Future work in this direction may focus on incorporating supplementary information to11
further assist imputation, such as road topology, weather and events. From a methodological per-12
spective, it is also worthwhile to investigate better solutions for temporal modeling as well as more13
efficient solution algorithms. Overall, this research contributes towards advancing data-driven14
transport applications through improving the integrity and reliability of input data.15
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