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7 A B S T R A C T8
9

Missing values are prevalent in spatio-temporal transport data, undermining the quality of10

data-driven analysis. While prior works have demonstrated the promise of tensor completion11

methods for imputation, their performance remains limited for complicated composite missing12

patterns. This paper proposes a novel imputation framework combining tensor factorization13

and rank minimization, which is effective in capturing key traffic dynamics and eliminates14

the need for exhaustive rank tuning. The framework is further supplemented with time series15

decomposition to account for trends, spatio-temporal correlations, and outliers, with the intention16

of improving the robustness of imputation results. A Bregman ADMM algorithm is designed17

to solve the resulting multi-block nonconvex optimization efficiently. Experiments on four18

real-world transport datasets suggest that the proposed framework outperforms state-of-the-19

art imputation methods, including the context of complex missing patterns with high missing20

rates, while maintaining reasonable computation efficiency. Furthermore, the robustness of our21

model in extreme missing data scenarios, as well as under perturbation in hyperparameters, has22

been validated. These results also underscore the potential benefits of incorporating temporal23

modeling for more reliable imputation.24

25

1. Introduction26

1.1. Background27

Transport data, enriched by contemporary data collection techniques and open data initiatives, propels a multitude28

of applications, including traffic forecasting, traffic state estimation, and traffic flow analysis (Mahajan et al., 2022;29

Liu et al., 2021). These data-driven studies have enabled improved decision-making for the efficiency, safety, and30

sustainability of urban transport systems. However, the integrity of transport data is often undermined by missing31

values, particularly in time series data like traffic state, public transport ridership, and shared mobility usage. Even32

with the progression of transportation management systems, the issue of missing data is still not rare. For instance, a33

considerable number of traffic sensors with over half of their readings missing were reported by Laña et al. (2018),34

where only 11% of sensors in the study area demonstrated more than 98% data completeness. Another piece of evidence35

from bicycle volume data indicated that only 54% of the data is viable for use (El Esawey et al., 2015). These issues pose36

significant challenges for time series modeling, leading to a compromise in terms of analysis and prediction accuracy37

(Fang et al., 2023). Hence, devising accurate data imputation methods becomes essential to address the challenges of38

missing values in transport data.39

Transport data can be corrupted for various reasons, including communication failure, sensor failure, infrastructure40

upgrading, and database failure, resulting in different missing patterns. Notably, missing data does not necessarily41

indicate the absence of entries. As summarized in AASHTO Guidelines for Traffic Data Programs, erroneous records,42

such as repeated, extreme, or error-coded values, also represent missing data as they are unusable for further analysis43

(AASHTO, 2009). One common missing data scenario in transport pertains to occasional random missing entries,44

which can generally be addressed by simple methods like temporal interpolation and spatial weighting. However,45

structured missing entries, characterized by missing data in the form of spatial and temporal clusters, pose more46

significant challenges for imputation methods. It was early emphasized by Smith et al. (2003) that missing entries47

in transport data can happen in both temporal and spatial domains, with varying time spans of missing values.48
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A vast collection of transport data are spatio-temporal data, which can be naturally organized as matrices spanning1

space and time. The periodicity of transport time series further allows wrapping the temporal dimension into a higher2

number of dimensions like time-of-the-day and day-of-the-week. Given such inherent tensorial structure, tensor/matrix3

factorization and completion have emerged as one of the most promising solutions for transport data imputation,4

offering better imputation accuracy and higher computational efficiency over other methods like simple interpolation5

and statistical learning. Initially developed within the domain of computer vision and recommendation systems (Liu6

et al., 2013; Salakhutdinov and Mnih, 2008), these techniques are capable of modeling intricate multilinear relationship7

and filling in missing data by exploiting the low-rank property of transport data. They have proven effective for8

understanding urban mobility dynamics (Sun and Axhausen, 2016) and improving imputation accuracy across various9

missing patterns (Tan et al., 2013; Li et al., 2013; Chen et al., 2019).10

Nevertheless, the performance of many existing tensor-based imputation methods are still limited, when applied11

on spatio-temporal transport data with complex missing patterns. Similar to the cases in image recovery (Yamamoto12

et al., 2022), some imputation methods have been found to falter faced with composite missing patterns, especially13

when spatial and temporal missing happens simultaneously. Additionally, data outliers—especially extreme values—14

can incur instability in imputation results, while variations in traffic dynamics due to supply-side changes, such as fleet15

expansion or infrastructure damage, may also adversely affect imputation accuracy. To develop an effective imputation16

method for practical transport data, a significant challenge lies in enhancing the robustness to handle various missing17

patterns, outliers, and temporal pattern shifts. As such, bridging the gap between existing tensor methods and the18

multifaceted real-world complexity remains an open research problem.19

1.2. Literature Review20

The effective imputation of missing values in transport data primarily revolves around exploiting temporal patterns21

and spatial similarities. These ideas are often realized through interpolation of observed values, fitting a statistical22

learning model, and optimizing a priori objective. A broad range of methodologies adhering to these ideas have been23

explored over the years, falling into three general paradigms: simple interpolation, machine learning, and tensor-based24

methods.25

Typical simple interpolation methods include historical averaging, and weighted averaging across neighboring26

time periods and sensors (Smith et al., 2003). While straightforward to implement, these methods are only effective27

for isolated missing entries due to their strong dependency on historical or surrounding data. The imputation quality28

can be improved via parametric models like autoregressive models (Tight et al., 1993), which can relieve the difficulty29

in determining weights for averaging and reduce the impacts of outliers.30

To address complicated missing patterns, recent researches resort to machine learning models, because of their31

strong predictive power. One line of research leverages clustering to extract temporal patterns, thereby facilitating32

missing entry imputation (Tang et al., 2015). Clustering can also be integrated with classification models to counteract33

its limitation with whole-day missing scenarios (Laña et al., 2018). The importance of explicit temporal modeling,34

e.g., the Prophet model (Li et al., 2020) and Gaussian process with a periodical kernel (Jiang et al., 2022), is35

later acknowledged for handling complex missing scenarios. However, these methods can become limited for either36

complicated workflows or high computational complexity. Hence, deep learning, which has seen significant success37

in traffic forecasting, has been recently introduced for imputation. Noteworthy methods include denoising stacked38

autoencoder (Duan et al., 2016), graph convolutional neural network (Chen and Chen, 2022), and attention mechanism39

(Liang et al., 2022). The common idea behind them is to encode the spatio-temporal patterns in latent spaces or a40

memory module. However, generating appropriate training samples is non-trivial. Most deep learning-based models41

use a sliding window strategy to prepare samples, which are short time series segments ranging from 15 minutes to42

one day. Such small window sizes restrict the contextual information input to the model, limiting their applicability in43

scenarios with longer missing periods.44

Tensor-based methods provide a streamlined imputation formulation by exploiting the inherent low-rank property45

and multi-dimensional relationships present in transport data. One approach is tensor factorization, which breaks46

transport data into several latent factors; it degenerates into matrix factorization when the transport data is two-47

dimensional (Li et al., 2013). Each decomposed factor encodes the information of a specific dimension, indicating48

key time series patterns and correlations among sensors. Missing value imputation can be realized by minimizing the49

reconstruction error from factors (Tan et al., 2013) or maximizing the posterior likelihood in the Bayesian context50

(Chen et al., 2019). Regularization can also be applied to enforce spatial and temporal smoothness (Chen et al., 2018).51

However, a significant limitation of tensor factorization is the need for predefined ranks as hyperparameters, which are52
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hard to determine in practice. Tensor completion, on the other hand, seeks a low-rank approximation of transport data1

by directly minimizing the rank of the reconstructed tensor. Given that tensor rank is non-differentiable, many studies2

focused on finding a viable rank approximation, e.g., truncated nuclear norm (Chen et al., 2020) and Schatten-𝑝 norm3

(Nie et al., 2022). However, tensor rank and its approximations are permutation and scale invariant, i.e., permuting4

or scaling the rows or columns of a matrix does not change its rank and singular values. Therefore, it may result in5

suboptimal imputation results that deviate from observed temporal patterns when temporal dependencies within the6

data are not explicitly accounted for via time series modeling. Integrating tensor completion with autoregressive models7

has proven to be an effective solution to this problem (Chen et al., 2022).8

1.3. Objectives and Contribution9

This study, following the paradigm of tensor-based method, aims to design a new transport data imputation10

framework, namely robust Tucker factorization-based tensor completion (RTTC), which is effective for various11

composite missing patterns. Our contribution can be summarized into the following points:12

• The framework leverages tensor factorization techniques combined with rank minimization, effectively elimi-13

nating the need for predefined ranks and enhancing the accuracy of imputation.14

• To account for outliers and temporal pattern shifts, the framework is embedded with a time series decomposition15

model, enabling effective modeling of temporal evolution in transport data.16

• An improved alternating direction method of multiplier (ADMM) algorithm is designed to solve the multi-block17

nonconvex separable problem in the proposed framework.18

This paper is structured as follows. In Section 2, we present the fundamentals of tensors and establish the problem19

definition. Section 3 details our novel transport data imputation framework. In Section 4, we present the experimental20

results, demonstrating the effectiveness of our approach. Finally, in Section 5, we provide a conclusion and outline21

potential future research directions.22

2. Preliminaries23

2.1. Notations24

In this paper, scalars are represented by italic letters, vectors by boldface lowercase letters, matrices by boldface25

uppercase letters, and tensors by calligraphic letters, for example, 𝑥, 𝒙, 𝑿, and  , respectively.26

A tensor with 𝑘 modes, also referred to as a 𝑘-way tensor or a 𝑘-dimensional tensor, is represented as  ∈27

ℝ𝑁1,𝑁2,…,𝑁𝑘 , where 𝑁𝑛 indicates the size of the 𝑛-th mode. Subscripts added to a tensor, such as 𝑥𝑖1𝑖2…𝑖𝑘 , indicate the28

(𝑖1, 𝑖2,… , 𝑖𝑘)-th entry of the tensor.29

In reference to the transport data discussed in this paper, we begin with a generic matrix representation, 𝑿 ∈30

ℝ𝑁𝑆×𝑁𝑇 , that includes a time series of measurements over a specific period gathered from a range of sensors. Here,31

𝑁𝑆 represents the number of sensors and𝑁𝑇 refers to the number of time slots. This matrix structure can be reorganized32

into a tensor structure by reshaping along the temporal mode. For example, a four-way tensor,  ∈ ℝ𝑁𝑠×𝑁𝑤×𝑁𝑑×𝑁𝑡 ,33

can be obtained by reshaping the temporal mode into weeks and days-of-the-week, where𝑁𝑤,𝑁𝑑 , and𝑁𝑡 indicate the34

number of weeks, days in a week, and time slots in a day, respectively. It is worth noting that, when𝑁𝑇 is not divisible35

by the product of 𝑁𝑤, 𝑁𝑑 , and 𝑁𝑡, the matrix can be padded with null values in the temporal mode to allow proper36

reshaping. Also, more temporal modes, such as month-of-the-year, can be incorporated to transform the matrix into a37

higher-order tensor when dealing with data spanning a long time period.38

2.2. Tensor Basics39

A tensor can be converted from and to a matrix through the folding and unfolding operations along its 𝑛-th mode,40

 = fold𝑛(𝑿(𝑛);𝑁1,… , 𝑁𝑘) ∈ ℝ𝑁1,𝑁2,…,𝑁𝑘 , (1)
𝑿(𝑛) = unfold𝑛() ∈ ℝ𝑁𝑛×(𝑁1×⋯×𝑁𝑛−1×𝑁𝑛+1×⋯×𝑁𝑘). (2)

Similar to a matrix, a tensor can be characterized by a range of different norms. The 𝓁1 norm of a tensor ‖⋅‖1 can41

be defined as the absolute sum of all its entries, and the Frobenius norm of a tensor ‖⋅‖𝐹 can be defined as the square42
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root of the squared sum of all its entries,1

‖‖1 =
∑

𝑖1,𝑖2,…,𝑖𝑘

|𝑥𝑖1,𝑖2,…,𝑖𝑘 |, ‖‖𝐹 =
√

∑

𝑖1,𝑖2,…,𝑖𝑘

𝑥2𝑖1,𝑖2,…,𝑖𝑘
. (3)

Tensor factorization refers to decomposing a tensor into several factors. In this paper, we focus on Tucker2

factorization, which can factorize a tensor into the 𝑘 + 1 components, including a core tensor and 𝑘 factor matrices3

(Kolda and Bader, 2009),4

 =  ×1 𝑼1 ×2 ⋯ ×𝑘 𝑼𝑘. (4)
where  ∈ ℝ𝑟1×⋯×𝑟𝑘 is the core tensor and 𝑼𝑛 ∈ ℝ𝑁𝑛×𝑟𝑛 (𝑛 ∈ [𝑘]) are the factor matrices, respectively. 𝑟1,… , 𝑟𝑘 are5

the rank of factor matrices. The operator ×𝑛 is the 𝑛-mode product.6

Given an arbitrary tensor  ∈ ℝ𝑟1×⋯×𝑟𝑘 and a matrix 𝑼 ∈ ℝ𝑁𝑛×𝑟𝑛 , their 𝑛-mode product, denoted by  ∈7

ℝ𝑟1×⋯×𝑟𝑛−1×𝑁𝑛×𝑟𝑛+1×⋯×𝑟𝑘 , can be defined by:8

 =  ×𝑛 𝑼 ⇔  = fold𝑛(𝑼𝑨(𝑛)). (5)
The definition can also be written using an element-wise expression, 𝑏𝑖1…𝑖𝑛−1𝑗𝑖𝑛+1…𝑖𝑘 =

∑

𝑖𝑛
𝑎𝑖1…𝑖𝑘𝑢𝑗𝑖𝑛 . Likewise,9

the Tucker factorization can be written element-wisely:10

𝑥𝑖1…𝑖𝑘 =
𝑟1
∑

𝑗1=1
⋯

𝑟𝑘
∑

𝑗𝑘=1
𝑔𝑗1…𝑗𝑘𝑢1,𝑖1𝑗1 ⋯ 𝑢𝑘,𝑖𝑘𝑗𝑘 . (6)

One natural definition of tensor rank coming with Tucker factorization is the tensor 𝑛-rank, defined as the rank of11

𝑛-mode unfolding matrix of a tensor. The Tucker rank is then defined as the set of 𝑛-rank of all unfolding matrices12

(rank(1)(), rank(2)(),… , rank(𝑘)()), where13

rank(𝑛)() = rank(𝑿(𝑛)). (7)
2.3. Problem Definition14

We formulate the problem of transport data imputation in a tensorial framework. Given an incomplete tensor 𝛺 =15

⊙𝛺 ∈ ℝ𝑁1×⋯×𝑁𝑘 , where⊙ is element-wise product,  represents the ground truth tensor, and𝛺 ∈ {0, 1}𝑁1×⋯×𝑁𝑘16

denotes the binary mask tensor indicating observed entries, our objective is to deduce a restored tensor  ∈ ℝ𝑁1×⋯×𝑁𝑘17

approximating the true tensor.18

3. Imputation Framework19

In this section, we first present the idea of using a time series decomposition model as the underlying temporal20

model of transport data. Then, based on the time series decomposition, we propose a new optimization model21

combining tensor factorization and rank minimization to enable robust imputation of missing values.22

3.1. Time Series Decomposition23

In order to effectively model the temporal evolution of time series in transport data, an additive time series24

decomposition is formulated and later embedded in the proposed framework, as illustrated in Fig. 1. We base the25

rationale behind the decomposition on the characteristics of actual transport data. An representative traffic volume26

snippet from a loop detector in London is shown in Fig. 2, where part of observations are missing, as indicated by27

orange strips. Some major findings include (i) An apparent drop in traffic volume can be noticed around Aug 15, 2019,28

which is not observed elsewhere. This may signify a long-term supply-side change, such as road construction. Another29

sharp volume drop is evident around Oct 7, 2019, which quickly recovers to the usual level, possibly due to a temporary30

lane closure. (ii) Daily periodicity can be easily observed from the plot, with one or two peaks during the daytime and31

dips at night. (iii) A few spurious extreme values can be seen around Aug 11, 2019 and Aug 14, 2019, which are32

outliers in need of careful treatment by the imputation model. (iv) Both short-term random gaps and full-day gaps of33

missing values can be identified throughout the snippet. (v) A notable extended gap of missing values can be spotted34
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Figure 1: An overview of the time series decomposition. Note that tensors are illustrated as 3-dimensional cubes merely
for demonstration purposes; they can be of higher modes to incorporate higher-order information.
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Figure 2: An example time series of traffic volume data collected by a loop detector in London. The orange background in
the figure indicate missing values.

in September. This gap is shared across all sensors, indicating a system-wide blackout, possibly due to system upgrade1

or data loss.2

Based on the observations above, we decompose the time series into three components, namely trend, seasonality,3

and error. The trend component assumes a locally constant trend to provide a stable prior for the imputation. The4

seasonal component captures the periodicity of the time series and the correlations among sensors, aligning with the5

low-rank property of the transport data tensor. The error component accounts for the occasional outliers in the time6

series. To sum up, a transport data tensor can be expressed as the sum of the following three components,7

 =  +  +  , (8)
where  ,  , and  denote the trend tensor, seasonality tensor, and error tensor, respectively.8

The trend tensor is established through a preliminary step of changepoint detection, such that major changes in9

temporal evolution, e.g., the volume drop in Fig. 2, can be identified. In changepoint detection, we hold the assumption10

that changepoints occur independently across sensors. Therefore, the tensor is first unfolded back to a matrix, and11

changepoint detection is performed on time series of each sensor individually. The locations of changepoints in time12

series are examined using the pruned exact linear time (PELT) algorithm (Killick et al., 2012), where the homogeneity13

of each segment is measured using the Gaussian kernel function (Arlot et al., 2019). Details about the PELT algorithm14

is presented in Appendix B.15
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Figure 3: Illustration of time series segmentation from changepoints. Three example time series are shown in the left figure,
where the identified changepoints are indicated by red dots and missing values are dimmed in color. Segmentation are
performed based on these changepoints, resulting in the piecewise trend model, as shown in the right figure.

The identified changepoints are then used to partition the time series into a sequence of segments. The basic idea1

behind the trend model is illustrated in Fig. 3. Within each segment, we assume a constant trend component — a2

piecewise constant trend model — in an effort to enhance the robustness of imputation results. Let us first consider3

the time series 𝒙 from an arbitrary sensor. Changepoint detection is applied to the non-missing subseries 𝒙̃, resulting4

in a sequence of changepoints 𝝉 = (𝜏1,… , 𝜏𝑁𝜏
). To enhance robustness, segmentation is not executed precisely at the5

identified changepoints. Instead, the average of the indices of the 𝑖-th non-missing predecessor and successor around6

each changepoint is used. For instance, as illustrated in the first sensor of Fig. 3, segments are divided at the midpoint7

of the missing gap rather than directly at the changepoint. The same procedure is repeated across all sensors to obtain8

the complete segmentation of the measurement matrix. After segmentation, a unique trend offset 𝑐𝑖, which will be9

later updated in the optimization model, is placed on the 𝑖-th segment, embodying the overall trend and forming the10

piecewise constant trend model. This approach can effectively capture the mean shift in traffic dynamics. It is worth11

noting that, different from classical time series decomposition methods like moving average, our trend model is much12

simplified. It does not involve a moving window, which makes it more stable when handling incomplete data.13

The seasonal component of the time series decomposition is managed using a Tucker factorization model, which14

factorizes the low-rank seasonal tensor into a core tensor and factor matrices, allowing us to effectively capture the15

spatio-temporal correlations in the data, including the temporal periodicity and cross-sensor correlations. Details of16

addressing Tucker factorization will be explained in the subsequent subsection. Finally, the additional error component17

is responsible for managing the occasional outliers in the time series, thereby mitigating their impacts on the imputation18

results.19

3.2. Optimization Problem20

To obtain a proper imputation of the missing values, the objective of tensor-based methods is often either21

minimizing the reconstruction error in the case of tensor factorization, or minimizing the tensor rank when working on22

the full-sized tensor. Based on the time series decomposition model (Eq. (8)), one may want to directly minimize the23

error component because of the tensor factorization. However, as reviewed in Introduction, the difficulty in determining24

appropriate ranks for Tucker factorization is one of its major limitations. It is reasonable to apply an additional penalty25

on large Tucker ranks in order to relieve the burden of rank determination. Additionally, it was suggested by Goulart26

et al. (2017) that imposing parsimony on the core tensor can help alleviate the adverse effects of misspecified ranks.27

Thus, the following objective is designed to tackle the aforementioned limitation,28

min
{𝑼𝑖},,

‖‖1 + 𝜇‖‖1 + 𝜆
∑𝑘

𝑖=1
rank(𝑼𝑖) +

𝜉
2
∑𝑘

𝑖=2
‖𝑫𝑖𝑼𝑖‖2𝐹 . (9)

where {𝑼𝑖} is a shorthand for {𝑼1,𝑼2,… ,𝑼𝑘}, and is used for conciseness hereafter.29

The objective function consists of four components, including the 𝓁1 norm of the error term, the 𝓁1 norm of the30

core tensor, the ranks of factor matrices, and the total variation (TV) regularization. The 𝓁1 regularization of both the31

error term and the core tensor aims to obtain a sparse solution. The last TV regularization term aims to stabilize the32

tensor completion result by applying a smoothness prior on factor matrices (Wang et al., 2008) with the help of the33
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difference matrix:1

𝑫𝑖 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 ⋯ 0 0
−1 1 ⋯ 0 0
0 −1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ −1 1

⎞

⎟

⎟

⎟

⎟

⎠

∈ ℝ𝑁𝑖×𝑁𝑖 , (10)

Note that the TV regularization is only imposed on the temporal factors, as the first mode, i.e., the mode of sensors, is2

not necessarily smooth in the local neighborhood.3

Most tensor completion methods based on rank minimization aim to minimize the sum of the ranks of all unfolding4

matrices, i.e., ∑𝑖 rank(𝑺(𝑖)) (Liu et al., 2013; Chen et al., 2020; Nie et al., 2022). However, with tensor factorization5

in the optimization problem, optimizing over unfolding matrices introduces additional difficulty in designing solution6

algorithms. To circumvent this issue, we directly optimize over the sum of the ranks of all factor matrices, denoted as7
∑

𝑖 rank(𝑼𝑖), which is equivalent to minimizing the sum of ranks of unfolding matrices (Yu et al., 2022).8

To ensure the objective function is differentiable, a smooth surrogate for matrix rank is necessary (Nie et al.,9

2022; Kang et al., 2015). Given that the matrix rank is equal to the number of non-zero values of its singular values,10

approximations are usually designed in the direction of finding a better surrogate for the 𝓁0 norm. Compared with11

nuclear norm, which is the convex envelope of matrix rank, nonconvex surrogates, such as truncated nuclear norm and12

Schatten-𝑝 norm, have been shown to provide superior approximations. In our formulation, we employ the 𝛾-norm for13

a better approximation,14

‖𝑼‖𝛾 =
∑

𝑖

(1 + 𝛾)𝜎𝑖(𝑼 )
𝛾 + 𝜎𝑖(𝑼 )

, (11)

where 𝜎𝑖(𝑼 ) denote the 𝑖-th singular value of factor matrix 𝑼 , and 𝛾 is a shape parameter. Substitute the matrix rank15

in Eq. (9) by the 𝛾-norm above, and the complete optimization problem can be formulated as:16

min
{𝑼𝑖},, ,𝒄,

‖‖1 + 𝜇‖‖1 + 𝜆
𝑘
∑

𝑖=1
‖𝑼𝑖‖𝛾 +

𝜉
2

𝑘
∑

𝑖=2
‖𝑫𝑖𝑼𝑖‖2𝐹 (12)

s.t.  = 𝑓 (𝒄) + 𝑓 (;𝑼1,⋯ ,𝑼𝑘) +  (13)
Ω = Ω, (14)

where the first constraint is the time series decomposition of the transport data tensor. As outlined in Eq. (8), we have17

 = 𝑓 (𝒄) =
∑

𝑖 𝑐𝑖 fold1(𝚿𝑖) and  = 𝑓 (;𝑼1,⋯ ,𝑼𝑘) =  ×1 𝑼1 ×2 ⋯ ×𝑘 𝑼𝑘. The trend function  connects18

the changepoints identified by the PELT algorithm with the decision variables 𝒄. Each time series segment partitioned19

by changepoints is assigned a variable 𝑐𝑖, which represents the corresponding long-term trend. Additionally, a binary20

masking matrix, 𝚿𝑖 ∈ {0, 1}𝑁𝑠×𝑁𝑡 , is aligned with each segment. The seasonal term  here is substituted by the Tucker21

factorization. The last constraint ensures that the values of all observed entries are identical to the imputation results.22

4. Solution Algorithm23

While the optimization problem above with two equality constraints can be solved using gradient descent by24

absorbing the constraints into the objective function, it can be computationally inefficient. Fortunately, it is feasible25

to separate the objective as the sum of several decoupled functions, allowing acceleration with ADMM (Boyd, 2010).26

The basic idea behind ADMM is to decompose the problem into smaller subproblems, each of which can be solved27

independently and iteratively.28

4.1. Problem Separation29

To enable successful separation, auxiliary variables {𝑽𝑖} are introduced to decouple the third and last components30

in the objective, resulting in the modified problem,31

min
{𝑼𝑖},, ,𝒄,

‖‖1 + 𝜇‖‖1 + 𝜆
∑𝑘

𝑖=1
‖𝑽𝑖‖𝛾 +

𝜉
2
∑𝑘

𝑖=2
‖𝑫𝑖𝑼𝑖‖2𝐹 (15)
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s.t.  = 𝑓 (𝒄) + 𝑓 (;𝑼1,⋯ ,𝑼𝑘) +  (16)
Ω = Ω (17)
𝑼𝑖 = 𝑽𝑖. (18)

The problem is now separable with four decoupled blocks in the objective. Denote the Lagrangian multipliers by1

 and 𝚪, the augmented Lagrangian is given as follows:2

𝐿({𝑼𝑖,𝑽𝑖,𝚪𝑖},,  , 𝒄, ,) = ‖‖1 + 𝜇‖‖1 + 𝜆
∑𝑘

𝑖=1
‖𝑽𝑖‖𝛾 +

𝜉
2
∑𝑘

𝑖=2
‖𝑫𝑖𝑼𝑖‖2𝐹

+
𝜌
2
‖ − 𝑓 (𝒄) − 𝑓 (;𝑼1,⋯ ,𝑼𝑘) −  +‖

2
𝐹 (19)

+
∑𝑘

𝑖=1
𝜌
2
‖𝑼𝑖 − 𝑽𝑖 + 𝚪𝑖‖2𝐹 .

4.2. Bregman ADMM Algorithm3

While the problem has become separable after modification, the convergence of standard ADMM, initially designed4

for two-block problems, is not guaranteed when extended to a higher number of blocks (Chen et al., 2016). To overcome5

this challenge, we incorporate the Bregman divergence in the subproblems, which has been demonstrated to effectively6

help optimization convergence (Bauschke et al., 2017; Wang et al., 2018). In this section, we first show how each7

subproblem can be solved under the Bregman ADMM framework, and then conclude with the complete algorithm.8

4.2.1. Solving 𝑼 -Subproblems9

We begin with the first factor matrix 𝑼1, and the subproblem can be described as:10

𝑼 (𝑡+1)
1 = argmin

𝑼1

𝐿({𝑼 (𝑡)
𝑖≠1,𝑽

(𝑡)
𝑖 ,𝚪(𝑡)

𝑖 },𝑼1,(𝑡),  (𝑡), 𝒄(𝑡), (𝑡),(𝑡)) +
𝜂
2
‖𝑼1 − 𝑼 (𝑡)

1 ‖

2
𝐹 (20)

= argmin
𝑼1

𝜌
2
‖ − 𝑓 ((𝑡);𝑼1,⋯ ,𝑼 (𝑡)

𝑘 )‖2𝐹 +
𝜌
2
‖𝑼1 − 𝑽 (𝑡)

1 + 𝚪(𝑡)
1 ‖

2
𝐹 +

𝜂
2
‖𝑼1 − 𝑼 (𝑡)

1 ‖

2
𝐹 , (21)

where 𝜂 > 0 is a coefficient of the Bregman divergence, defined as the Frobenius norm of the updating difference, and11

 =  (𝑡) − 𝑓 (𝒄(𝑡)) −  (𝑡) +(𝑡). All variables excluding 𝑼1 are fixed, resulting in a convex problem. The solution12

can be easily derived by letting the gradient of the subproblem objective be zero:13

𝑼 (𝑡+1)
1 = (𝜌𝒁(1)𝑷1(𝑮

(𝑡)
(1))

⊤ − 𝜌𝑸1 − 𝜂𝑼
(𝑡)
1 )(𝜌𝑮(𝑡)

(1)𝑷
⊤
1 𝑷1(𝑮

(𝑡)
(1))

⊤ − (𝜌 + 𝜂)𝑰)−1, (22)

where 𝑷1 = 𝑼 (𝑡)
2 ⊗⋯⊗ 𝑼 (𝑡)

𝑘 and 𝑸1 = 𝑽 (𝑡)
1 − 𝚪(𝑡)

1 . The operator ⊗ here denotes the Kronecker product.14

A simple closed-form solution for the subproblems of other factor matrices is unfortunately unavailable because15

of the additional TV regularizer. For an arbitrary factor matrix 𝑼𝑚 (2 ⩽ 𝑚 ⩽ 𝑘), its subproblem will be:16

𝑼 (𝑡+1)
𝑚 = argmin

𝑼𝑚
𝐿({𝑼 (𝑡+1)

𝑖<𝑚 ,𝑼 (𝑡)
𝑖>𝑚,𝑽

(𝑡)
𝑖 ,𝚪(𝑡)

𝑖 },𝑼𝑚,(𝑡),  (𝑡), 𝒄(𝑡), (𝑡),(𝑡)) +
𝜂
2
‖𝑼𝑚 − 𝑼 (𝑡)

𝑚 ‖

2
𝐹 (23)

= argmin
𝑼𝑚

𝜌
2
‖ − 𝑓 ((𝑡);𝑼

(𝑡+1)
1 ,⋯ ,𝑼 (𝑡)

𝑘 )‖2𝐹 +
𝜉
2
‖𝑫𝑚𝑼𝑚‖2𝐹

+
𝜌
2
‖𝑼𝑚 − 𝑽 (𝑡)

𝑚 + 𝚪(𝑡)
𝑚 ‖

2
𝐹 +

𝜂
2
‖𝑼𝑚 − 𝑼 (𝑡)

𝑚 ‖

2
𝐹 . (24)

Again, letting the gradient of the subproblem objective be zero, it can be simplified to a Sylvester equation:17

𝑨𝑼𝑚 + 𝑼𝑚𝑩 = 𝑹, (25)
where 𝑨 = 𝜌𝑰 + 𝜉𝑫⊤

𝑚𝑫𝑚, 𝑩 = 𝜂𝑰 + 𝜌𝑮(𝑡)
(𝑖)𝑷

⊤
𝑚 𝑷𝑚(𝑮

(𝑡)
(𝑖))

⊤, and 𝑹 = 𝜌𝑸𝑚 + 𝜂𝑼 (𝑡)
𝑚 + 𝜌𝒁(𝑖)𝑷𝑚(𝑮

(𝑡)
(𝑖))

⊤. Herein,18

𝑷𝑚 =
⨂

𝑖≠𝑚𝑼 (𝑡)
𝑖 , and 𝑸𝑚 = 𝑽 (𝑡)

𝑚 − 𝚪(𝑡)
𝑚 . The Sylvester equation can be solved using the Bartels-Stewart algorithm or19

iterative methods like Krylov subspace methods (Higham, 2002). Details on its solution algorithms can be found in20

Appendix C.21
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Figure 4: Linearization of 𝛾-norm

4.2.2. Solving 𝑽 -Subproblems1

The subproblem of an arbitrary 𝑽𝑚 (1 ⩽ 𝑚 ⩽ 𝑘) can be described as:2

𝑽 (𝑡+1)
𝑚 = argmin

𝑽𝑚
𝐿({𝑽 (𝑡+1)

𝑖<𝑚 ,𝑽 (𝑡)
𝑖>𝑚,𝑼

(𝑡+1)
𝑖 ,𝚪(𝑡)

𝑖 },𝑽𝑚,(𝑡),  (𝑡), 𝒄(𝑡), (𝑡),(𝑡)) +
𝜂
2
‖𝑽𝑚 − 𝑽 (𝑡)

𝑚 ‖

2
𝐹 (26)

= argmin
𝑽𝑚

𝜆‖𝑽𝑚‖𝛾 +
𝜌
2
‖𝑽𝑚 − 𝑼 (𝑡+1)

𝑚 − 𝚪(𝑡)
𝑚 ‖

2
𝐹 +

𝜂
2
‖𝑽𝑚 − 𝑽 (𝑡)

𝑚 ‖

2
𝐹 (27)

= argmin
𝑽𝑚

𝜆
𝜌 + 𝜂

‖𝑽𝑚‖𝛾 +
1
2
‖𝑽𝑚 − 1

𝜌 + 𝜂
(𝜌(𝑼 (𝑡+1)

𝑚 + 𝚪(𝑡)
𝑚 ) + 𝜂𝑽 (𝑡)

𝑚 ‖

2
𝐹 (28)

= argmin
𝑽𝑚

𝜆
𝜌 + 𝜂

‖𝑽𝑚‖𝛾 +
1
2
‖𝑽𝑚 −𝑾𝑚‖

2
𝐹 , (29)

where 𝑾𝑚 = 1
𝜌+𝜂 (𝜌(𝑼

(𝑡+1)
𝑚 + 𝚪(𝑡)

𝑚 ) + 𝜂𝑽 (𝑡)
𝑚 ).3

The objective of the subproblem is non-convex and has been simplified as the sum of a 𝛾-norm and a Frobenius4

norm. It is well-known that the nuclear norm minimization problem can be solved using the singular value thresholding5

(SVT) method (Cai et al., 2010), where the nuclear norm is written as the 𝓁1-norm of the singular value vector. An6

extension to weighted 𝓁1-norm of singular value vector, i.e., weighted SVT (WSVT) (Chen et al., 2013; Lu et al.,7

2014), further allows the adoption of a broader range of norms like truncated nuclear norm (Chen et al., 2020). While8

the 𝛾-norm is not directly a weighted 𝓁1-norm of the singular value vector, it can be relaxed via linearization.9

Lemma 1. Let 𝜎𝑖 denote the 𝑖-th singular value of a matrix 𝑽 . Given the following function:10

ℎ(𝑽 ) = 𝜆
𝜌 + 𝜂

∑𝑘
𝑖=1

𝑔(𝜎𝑖) +
1
2
‖𝑽 −𝑾 ‖

2
𝐹 , (30)

where 𝑔(𝜎𝑖) = (1+𝛾)𝜎𝑖∕(𝛾 +𝜎𝑖) is concave, and its derivative 𝑔′(𝜎𝑖) = (1+𝛾)𝛾∕(𝛾 +𝜎𝑖)2 is monotonically decreasing.11

It can be relaxed to:12

ℎ̃(𝑽 ) = 𝜆
𝜌 + 𝜂

∑𝑘
𝑖=1

(

𝑔(𝜎(𝑡)𝑖 ) + 𝑔′(𝜎(𝑡)𝑖 )(𝜎𝑖 − 𝜎
(𝑡)
𝑖 )

)

+ 1
2
‖𝑽 −𝑾 ‖

2
𝐹 (31)

= 𝜆
𝜌 + 𝜂

∑𝑘
𝑖=1

𝑔′(𝜎(𝑡)𝑖 )𝜎𝑖 +
1
2
‖𝑽 −𝑾 ‖

2
𝐹 + 𝐶, (32)

where 𝐶 = 𝜆∕(𝜌 + 𝜂)
∑

𝑖(𝑔(𝜎
(𝑡)
𝑖 ) − 𝑔′(𝜎(𝑡)𝑖 )𝜎(𝑡)𝑖 ) is constant with respect to 𝑽 .13
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With Lemma 1, the 𝛾-norm of 𝑽𝑚 can be relaxed to its weighted 𝓁1-norm, as illustrated in Fig. 4. Then, the 𝑽𝑚1

subproblem can be solved by WST. Specifically, let the singular value decomposition (SVD) of 𝑾𝑚 be 𝑨𝚺𝑩⊤, the2

update rule is given by,3

𝑽 (𝑡+1)
𝑚 = 𝑨𝒯 𝜆

𝜌+𝜂𝝎
(𝚺)𝑩⊤, (33)

where 𝝎 = {𝑔′(𝜎(𝑡)𝑖 )}. The WST operator is defined by 𝒯 𝜆
𝜌+𝜂𝝎

(𝚺) = (𝚺 − 𝜆
𝜌+𝜂𝝎𝑰)+, where (⋅)+ = max(⋅, 0).4

4.2.3. Solving -Subproblem5

The subproblem of  can be written and simplified as:6

(𝑡+1) = argmin


𝐿({𝑼 (𝑡+1)
𝑖 ,𝑽 (𝑡+1)

𝑖 ,𝚪(𝑡)
𝑖 },,  (𝑡), 𝒄(𝑡), (𝑡),(𝑡)) +

𝜂
2
‖ − (𝑡)‖2𝐹 (34)

= argmin


‖‖1 +
𝜌
2𝜇

‖𝑓 (;𝑼
(𝑡+1)
1 ,⋯ ,𝑼 (𝑡+1)

𝑘 ) −‖

2
𝐹 +

𝜂
2𝜇

‖ − (𝑡)‖2𝐹 . (35)

Direct analysis with 𝑛-mode product is inconvenient. Hence, the objective of this subproblem is rewritten in the7

matrix form using Eq. (5). It can be noticed that the subproblem is a generalized 𝓁1-minimization problem:8

(𝑡+1) = argmin


‖‖1 + 𝜙() ⇔ 𝑮(𝑡+1)
(1) = argmin

𝑮(1)

‖𝑮(1)‖1 + 𝜑(𝑮(1)). (36)

The last two terms in Eq. (35) is represented by 𝜙(). Without loss of generality, the tensors are unfolded along the9

first mode, resulting in its matrix form 𝜑(𝑮(1)), along with the gradient 𝜑′(𝑮(1)):10

𝜑(𝑮(1)) =
1
2𝜇

(

𝜌‖𝑼 (𝑡+1)
1 𝑮(1)𝑷 ⊤

1 −𝒁(1)‖
2
𝐹 + 𝜂‖𝑮(1) −𝑮(𝑡)

(1)‖
2
𝐹

)

(37)

𝜑′(𝑮(1)) =
1
𝜇

(

𝜌(𝑼 (𝑡+1)
1 )⊤(𝑼 (𝑡+1)

1 𝑮(1)𝑷 ⊤
1 −𝒁(1))𝑷1 + 𝜂(𝑮(1) −𝑮(𝑡)

(1))
)

, (38)

where 𝑷1 =
⨂𝑘

𝑖=2𝑼
(𝑡+1)
𝑖 .11

Considering that function 𝜑(⋅) is differentiable and convex, the update rule can be given by the soft thresholding12

(ST) method (Yin et al., 2008; Boyd, 2010):13

𝑮(𝑡+1)
(1) = sgn(𝑯)⊙ (|𝑯| − 𝛿)+ , (39)

where 𝑯 = 𝑮(𝑡)
(1) − 𝛿𝜑

′(𝑮(𝑡)
(1)), and ⊙ is the Hadamard product. We empirically set the reciprocal of the step size 1∕𝛿14

as (𝜌‖𝑼 (𝑡+1)⊤
1 𝑼 (𝑡+1)

1 ‖2‖𝑷 ⊤
1 𝑷1‖2 + 𝜂)∕𝜇, which is bounded by the Lipschitz constant of 𝜑′(𝑮(𝑡)

(1)), as suggested by Hale15

et al. (2008), where ‖ ⋅ ‖2 denotes the spectral norm.16

4.2.4. Solving Other Subproblems17

Upon updating the factor matrices and the core tensor, the updated seasonal component can be computed by18

 = 𝑓 ((𝑡+1);𝑼
(𝑡+1)
1 ,⋯ ,𝑼 (𝑡+1)

𝑘 ). Then, the  subproblem can be simplified to a 𝓁1-minimization problem:19

 (𝑡+1) = argmin


𝐿({𝑼 (𝑡+1)
𝑖 ,𝑽 (𝑡+1)

𝑖 ,𝚪(𝑡)
𝑖 },(𝑡+1),  , 𝒄(𝑡), (𝑡),(𝑡)) +

𝜂
2
‖ −  (𝑡)

‖

2
𝐹 (40)

= argmin


‖‖1 +
𝜌 + 𝜂
2

‖ − ‖2𝐹 , (41)

where  = 1
𝜌+𝜂

(

𝜌
(

 (𝑡) − 𝑓 (𝒄(𝑡)) −  +(𝑡)) + 𝜂 (𝑡)). The update rule can be given by the ST method:20

 (𝑡+1) = sgn()⊙
(

|| − 1
𝜌 + 𝜂

)

+
. (42)
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The 𝒄 subproblem can be solved for each of its elements independently as they are separated by masks {𝚿𝑖},1

corresponding to one time series segment each. The update rule of an arbitrary 𝑐𝑚 can be derived by:2

𝑐(𝑡+1)𝑚 =argmin
𝑐𝑚

𝐿({𝑼 (𝑡+1)
𝑖 ,𝑽 (𝑡+1)

𝑖 ,𝚪(𝑡)
𝑖 },(𝑡+1),  (𝑡+1), 𝑐𝑚, (𝑡),(𝑡)) +

𝜂
2
(𝑐𝑚 − 𝑐(𝑡)𝑚 )2 (43)

=argmin
𝑐𝑚

𝜌
2
‖𝑐𝑚 fold1(𝚿𝑚) − ( (𝑡) −  −  (𝑡+1) +(𝑡))‖2𝐹 +

𝜂
2
(𝑐𝑚 − 𝑐(𝑡)𝑚 )2 (44)

= 1
𝜌 + 𝜂

(𝜌𝜓̄𝑚 + 𝜂𝑐(𝑡)𝑚 ), (45)

where 𝜓̄𝑚 =
∑

𝑢𝑣(𝚿𝑚 ⊙ (𝑿(𝑡)
(1) − 𝑺(1) − 𝑬(𝑡+1)

(1) +𝑴 (𝑡)
(1)))𝑢𝑣∕‖𝚿𝑚‖1. And then we have  = 𝑓 (𝒄(𝑡+1)).3

A closed-form solution also exists for the  subproblem. Note that only the unobserved entries (indicated by 𝛺−)4

are updated due to the constraint Eq. (17):5

 (𝑡+1)
𝛺− =argmin


𝐿({𝑼 (𝑡+1)

𝑖 ,𝑽 (𝑡+1)
𝑖 ,𝚪(𝑡)

𝑖 },(𝑡+1),  (𝑡+1), 𝒄(𝑡+1), ,(𝑡)) +
𝜂
2
( −  (𝑡))2 (46)

=argmin


𝜌
2
‖ − ( +  +  (𝑡+1) −(𝑡)))‖2𝐹 +

𝜂
2
( −  (𝑡))2 (47)

= 1
𝜌 + 𝜂

(

𝜌( +  +  (𝑡+1) −(𝑡)) + 𝜂 (𝑡)) . (48)
Finally, the overall algorithm is concluded by Algorithm 1. Before updating variables, we first initialize  using6

historical average. Then,  and all 𝑼𝑖 are computed using higher-order SVD (Kolda and Bader, 2009). The auxiliary7

variables 𝑽𝑖 are set identical to 𝑼𝑖. Other variables, including  , and all 𝚪𝑖, are initialized as zero.8

Algorithm 1 Bregman ADMM for Robust Transport Data Imputation
Input: Incomplete tensor 𝛺; missing mask 𝛺; hyperparameters 𝜇, 𝜆, 𝜉, {𝑟𝑖}, 𝜌, 𝜂; convergence threshold 𝜖.
Output: Imputed tensor  .
1: Initialize primal variables and Lagrangian multipliers; set tolerance Δ ← ∞; set 𝑡 ← 1.
2: repeat
3: for 𝑖← 1,… , 𝑘 do
4: Update 𝑼𝑖 using Eq. (22) or Eq. (25).
5: end for
6: for 𝑖← 1,… , 𝑘 do
7: Update 𝑽𝑖 using Eq. (33).
8: end for
9: Update  using Eq. (39).

10: Compute  ← 𝑓 ((𝑡+1);𝑼
(𝑡+1)
1 ,⋯ ,𝑼 (𝑡+1)

𝑘 ).
11: Update  using Eq. (42).
12: Update 𝒄 using Eq. (45).
13: Compute  ← 𝑓 (𝒄(𝑡+1)).
14: ̄ ←  . Update  using Eq. (48).
15: Update Lagrangian multiplier  ←  +  −  −  −  .
16: for 𝑖← 1,… , 𝑘 do
17: Update Lagrangian multiplier 𝚪𝑖 ← 𝚪𝑖 + 𝑼𝑖 − 𝑽𝑖.
18: end for
19: 𝑡 ← 𝑡 + 1.
20: Δ ← ‖ − ̄‖

2
𝐹 ∕‖̄‖

2
𝐹 .

21: until Δ < 𝜖

5. Experiment Settings9

To evaluate the imputation performance of the proposed RTTC, four datasets are employed in this study. This10

section presents a detailed overview of the metadata and basic statistics of these datasets, as well as the preprocessing11
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Table 1
Metadata of Datasets

City # Sensors Duration Interval Measurements Tensor Size

Guangzhou 209 Aug 1, 2016 — Sep 30, 2016 10 min Speed (km/h) 209 × 9 × 7 × 144
London 276 Jul 1, 2019 — Oct 13, 2019 15 min Volume (veh/15min) 276 × 15 × 7 × 96
Madrid 324 Jun 1, 2021 — Sep 13, 2021 15 min Volume (veh/15min) 324 × 15 × 7 × 96
Melbourne 313 Jun 1, 2020 — Sep 13, 2020 15 min Volume (veh/15min) 313 × 15 × 7 × 96
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Figure 5: Singular values of transport data from four cities

methods. Furthermore, we provide the details of the experimental settings, including the design of missing patterns,1

base models for comparison, and configuration of hyperparameters.2

5.1. Data Description3

The datasets used in this study include one traffic speed data from Guangzhou (China) and three traffic volume4

data from London (UK), Madrid (Spain), and Melbourne (Australia), respectively1. To ensure the reliability of our5

analysis, we remove any traffic sensor data with less than 95% completeness, excluding time periods where all traffic6

detectors have no reading. For the traffic volume data, we select sensors located in the city centers, which typically7

experience higher traffic densities. Detailed metadata for all four datasets can be found in Table 1.8

1The Guangzhou data is available at https://zenodo.org/record/1205229. The other three datasets were gathered by the NeurIPS
Traffic4cast 2022 Challenge at https://www.iarai.ac.at/traffic4cast/challenge/.
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Figure 6: Typical examples of missing patterns. A simplified matrix of 12×20 is used for demonstration, where each sensor
has four records per day. The green cells indicate observed values, while the gray ones are missing values.

The singular values of the data matrices of all four cities are demonstrated in Fig. 5. The dominance of large1

singular values across all datasets is evident, substantiating the rationality of exploiting the low-rank property for2

missing value imputation. Furthermore, for the proposed framework, the data matrices are organized into four-way3

tensors  ∈ ℝ𝑁𝑠×𝑁𝑤×𝑁𝑑×𝑁𝑡 with the structure of sensor × week × day-of-the-week × time-of-the-day.4

5.2. Missing Patterns5

Contrary to the majority of studies, which typically create individual missing scenarios for each pattern, our6

experiment comprises a composite missing mask by integrating four fundamental missing patterns. The mixing-up7

of missing patterns can be expressed formally as:8

𝛺 = 𝛺BM ⊙𝛺RM ⊙𝛺DM ⊙𝛺TM, (49)
where BM refers to the blackout missing scenario; RM refers to random missing scenario; DM refers to day missing;9

and TM refers to time missing. These missing patterns can all be observed in the test data, as illustrated in Fig. 6. BM10

represents scenarios where an entire day’s data is missing across all sensors, akin to a complete system blackout.11

This is a crucial test case for transport data, as it simulates extreme situations like system-wide failures or data12

collection interruptions (Chen et al., 2022). RM is the most common case in transport data where traffic state readings13

are randomly unavailable due to sensor failures, communication issues, or other unpredictable factors. DM involves14

missing data in the same time across days, whereas TM is characterized by missing values of all time slots in a day15

(Nie et al., 2022). The DM pattern can often be seen in sensors that are turned off during nighttime.16

5.3. Base Models and Performance Metrics17

In our experiment, we compare the proposed RTTC with several simple baselines and state-of-the-art tensor-based18

transport data imputation models. The detailed hyperparameter settings of all the models can be found in Appendix A.19

• Historical average (HA). HA is a naïve baseline that averages the observed values over each time-of-the-day.20
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Table 2
Missing Rates of All Evaluation Scenarios

Scenarios 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BM 10% 10% 10% 10% 10% 10% 10% 10% 30% 30% 30% 30% 30% 30% 30% 30%
RM 10% 10% 10% 10% 30% 30% 30% 30% 10% 10% 10% 10% 30% 30% 30% 30%
DM 10% 10% 30% 30% 10% 10% 30% 30% 10% 10% 30% 30% 10% 10% 30% 30%
TM 10% 30% 10% 30% 10% 30% 10% 30% 10% 30% 10% 30% 10% 30% 10% 30%

Overall 34% 48% 49% 60% 48% 60% 60% 69% 52% 62% 62% 71% 62% 71% 71% 77%

• Low-Rank Tensor Completion with Truncated Schattern-𝑝 Norm (LRTC-TSpN). LRTC-TSpN is the state-1

of-the-art transport data imputation model based on rank minimization paradigm (Nie et al., 2022).2

• Bayesian Gaussian CANDECOMP/PARAFAC Decomposition (BGCP). BGCP is a Bayesian model based3

on tensor factorization paradigm, which extends the Bayesian probabilistic matrix factorization model (Salakhut-4

dinov and Mnih, 2008) from matrix to tensor (Chen et al., 2019).5

• Temporal Regularized Matrix Factorization (TRMF). TRMF is a matrix factorization-based model with an6

integrated autoregressive model for temporal modeling (Yu et al., 2016).7

• Low-Rank Autoregressive Tensor Completion (LATC). LATC is a rank minimization-based model with an8

integrated autoregressive model for temporal modeling (Chen et al., 2022).9

Two performance metrics, including an absolute metric (mean absolute error, MAE) and a relative metric10

(symmetric mean absolute percentage error, SMAPE), are used to quantify the imputation quality of the models, as11

defined below:12

MAE = 1
|𝐼(𝛺̃)|

∑

𝑖∈𝐼(𝛺̃)

|𝑥𝑖 − 𝑦𝑖|, SMAPE = 1
|𝐼(𝛺̃)|

∑

𝑖∈𝐼(𝛺̃)

|𝑥𝑖 − 𝑦𝑖|
|𝑥𝑖| + |𝑦𝑖|

× 100%, (50)

where 𝐼(𝛺̃) is the index set of testing entries given the mask 𝛺̃.13

6. Experiment Results14

In this section, the proposed imputation framework is first compared with base models on various evaluation15

scenarios, including some of extreme missing rates. Additionally, the sensitivity of hyperparameters on the imputation16

performance is examined through sensitivity analysis. Moreover, the computation time of different models are17

compared with each other.18

6.1. Imputation Performance19

The performance of imputation models is first evaluated on 16 composite missing scenarios. Each of these missing20

scenarios is subjected to two basic missing rates, namely, 10% and 30%. Consequently, this yields a total of 16 unique21

missing scenarios. The resultant composite missing rates, a product of the combination of these patterns, vary between22

34% and 77%. A complete list of all missing scenarios for evaluation and the corresponding overall missing rate is23

shown in Table 2. And the imputation performance of all the models on 16 missing scenarios in the four cities are24

listed in Table 3.25

On a general note, the proposed RTTC achieves the lowest error in most of the scenarios, particularly, with a26

higher advantage over base models in London and Madrid as well as scenarios with higher missing rates. It is worth27

noting that some state-of-the-art imputation models, despite exemplary performance on individual missing scenarios28

substantiated by prior literature and empirical observations, can suffer from compromised reliability in the presence29

of intricate composite missing scenarios, resulting in an imputation error higher than that of historical average.30

The performance of the proposed RTTC is consistently better than base models on London and Madrid datasets.31

Larger missing rates usually result in lower imputation accuracy due to less observed information, conforming with the32

error values in the tables. Nevertheless, a smaller degradation can be observed for the proposed model, even when faced33
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Table 3
Imputation Performance of All Models in 16 Composite Missing Scenarios

Scenario BM RM DM TM HA LRTC-TSpN TRMF BGCP LATC RTTC (Ours)

Guangzhou

1 10% 10% 10% 10% 4.18/6.26 3.66/5.47 3.17/4.92 2.82/4.44 2.61/4.10 2.64/4.18
2 10% 10% 10% 30% 3.94/5.95 3.29/4.99 3.16/4.91 2.86/4.49 2.68/4.21 2.73/4.31
3 10% 10% 30% 10% 5.22/7.52 3.19/4.84 3.13/4.86 2.77/4.35 2.58/4.06 2.62/4.14
4 10% 10% 30% 30% 4.87/7.09 3.07/4.69 3.17/4.94 2.80/4.40 2.66/4.19 2.67/4.23
5 10% 30% 10% 10% 3.94/5.95 3.16/4.80 3.12/4.86 2.73/4.29 2.55/4.03 2.59/4.10
6 10% 30% 10% 30% 3.84/5.82 3.06/4.68 3.17/4.93 2.79/4.40 2.64/4.16 2.69/4.24
7 10% 30% 30% 10% 4.87/7.09 3.00/4.60 3.14/4.90 2.74/4.30 2.60/4.10 2.61/4.13
8 10% 30% 30% 30% 4.69/6.86 2.97/4.57 3.22/5.02 2.77/4.35 2.68/4.22 2.66/4.20
9 30% 10% 10% 10% 3.83/5.77 4.37/6.31 4.68/6.78 3.30/5.04 3.15/4.82 2.91/4.56
10 30% 10% 10% 30% 3.78/5.72 3.98/5.83 4.45/6.52 3.29/5.05 3.08/4.74 2.91/4.56
11 30% 10% 30% 10% 4.76/6.93 3.92/5.75 4.38/6.43 3.23/4.94 3.03/4.66 2.84/4.45
12 30% 10% 30% 30% 4.62/6.77 3.69/5.47 4.20/6.22 3.25/4.98 3.01/4.66 2.89/4.53
13 30% 30% 10% 10% 3.78/5.73 3.91/5.73 4.39/6.46 3.19/4.90 3.01/4.63 2.87/4.48
14 30% 30% 10% 30% 3.77/5.72 3.67/5.44 4.21/6.26 3.20/4.93 3.00/4.64 2.88/4.52
15 30% 30% 30% 10% 4.62/6.77 3.65/5.41 4.17/6.19 3.12/4.81 2.97/4.60 2.82/4.42
16 30% 30% 30% 30% 4.54/6.68 3.49/5.23 4.02/6.03 3.16/4.87 2.98/4.63 2.87/4.50

London

1 10% 10% 10% 10% 65.41/12.89 56.40/10.89 52.55/10.57 56.18/9.42 36.77/7.79 36.32/7.81
2 10% 10% 10% 30% 64.33/12.59 52.48/10.02 56.02/10.89 78.23/9.71 38.52/8.01 38.35/8.12
3 10% 10% 30% 10% 74.98/14.61 50.69/9.74 50.06/10.40 49.96/9.04 42.57/8.02 36.61/7.71
4 10% 10% 30% 30% 72.58/14.11 50.27/9.50 54.58/10.62 112.93/9.56 43.34/8.26 38.26/8.05
5 10% 30% 10% 10% 64.25/12.51 49.25/9.72 49.39/10.14 49.82/8.92 36.27/7.66 35.83/7.65
6 10% 30% 10% 30% 63.89/12.40 49.07/9.50 51.94/10.49 62.91/9.28 38.25/7.95 38.11/8.04
7 10% 30% 30% 10% 72.52/14.06 48.01/9.35 47.65/9.99 46.92/8.77 42.32/8.08 36.79/7.73
8 10% 30% 30% 30% 71.26/13.80 48.94/9.34 50.61/10.35 78.02/9.42 43.55/8.36 38.49/8.04
9 30% 10% 10% 10% 64.74/12.71 76.50/14.48 63.20/13.01 68.60/11.02 43.60/9.10 40.01/8.37
10 30% 10% 10% 30% 64.22/12.50 70.26/13.25 68.67/13.11 79.93/10.94 43.73/9.02 41.32/8.61
11 30% 10% 30% 10% 72.73/14.15 68.72/13.00 57.55/11.98 54.68/10.32 47.35/9.10 40.36/8.33
12 30% 10% 30% 30% 71.44/13.84 65.95/12.40 62.56/12.41 80.49/10.47 47.70/9.18 41.55/8.51
13 30% 30% 10% 10% 64.11/12.47 68.56/13.12 58.97/12.01 53.20/10.21 41.95/8.74 39.75/8.27
14 30% 30% 10% 30% 63.96/12.38 65.82/12.51 63.27/12.22 93.50/10.71 42.92/8.84 41.52/8.54
15 30% 30% 30% 10% 71.36/13.82 64.83/12.36 55.09/11.40 52.45/10.02 46.78/9.02 41.00/8.41
16 30% 30% 30% 30% 70.63/13.65 63.71/12.05 58.99/11.76 69.94/10.18 47.70/9.19 42.64/8.72

Madrid

1 10% 10% 10% 10% 194.42/21.14 160.27/17.44 88.13/13.38 85.06/11.80 67.35/9.59 53.36/9.08
2 10% 10% 10% 30% 182.28/19.96 148.02/15.31 80.88/12.57 77.00/11.20 65.53/9.55 54.19/9.28
3 10% 10% 30% 10% 242.42/25.66 152.47/15.31 79.45/12.44 75.73/10.98 85.42/9.82 56.29/9.44
4 10% 10% 30% 30% 225.80/24.09 149.26/14.56 76.78/12.09 71.89/10.79 81.87/9.84 59.19/9.46
5 10% 30% 10% 10% 181.95/19.94 130.58/14.88 80.10/12.53 73.95/10.91 64.31/9.42 53.16/9.15
6 10% 30% 10% 30% 176.67/19.43 134.51/14.28 76.81/12.18 71.86/10.72 63.94/9.47 54.99/9.36
7 10% 30% 30% 10% 225.67/24.08 138.64/14.33 77.45/12.32 69.85/10.66 80.97/9.78 56.22/9.42
8 10% 30% 30% 30% 216.53/23.21 143.75/14.23 75.19/12.03 70.04/10.66 79.84/9.87 61.55/9.74
9 30% 10% 10% 10% 182.76/19.97 286.84/29.58 160.92/20.72 118.78/14.38 70.72/10.07 60.12/9.92
10 30% 10% 10% 30% 177.05/19.45 256.49/26.14 143.67/19.11 108.99/13.62 69.28/9.96 59.46/9.70
11 30% 10% 30% 10% 225.74/24.06 257.01/26.00 139.31/18.18 106.29/13.45 86.01/10.29 57.81/9.58
12 30% 10% 30% 30% 216.60/23.22 242.29/24.24 129.68/17.34 100.68/13.03 85.05/10.35 62.50/9.77
13 30% 30% 10% 10% 177.04/19.44 245.48/25.83 146.32/20.24 106.76/13.49 67.67/9.84 57.39/9.48
14 30% 30% 10% 30% 174.01/19.17 233.82/24.11 134.10/18.46 101.29/13.10 68.60/9.90 58.33/9.63
15 30% 30% 30% 10% 216.57/23.21 234.81/24.04 132.31/18.51 99.94/13.06 83.39/10.24 59.25/9.57
16 30% 30% 30% 30% 210.97/22.69 293.14/29.11 124.91/17.37 97.91/12.80 85.34/10.45 64.66/9.98

Melbourne

1 10% 10% 10% 10% 73.74/25.20 40.22/15.57 28.00/16.00 30.28/14.70 18.54/9.87 18.74/9.52
2 10% 10% 10% 30% 68.21/23.54 33.51/13.93 30.29/16.01 39.60/14.32 18.91/10.33 19.65/9.99
3 10% 10% 30% 10% 95.81/31.62 33.31/13.81 25.98/15.32 27.38/14.11 19.50/10.20 19.05/9.59
4 10% 10% 30% 30% 88.25/29.40 30.82/13.39 26.37/15.24 31.09/14.08 20.03/10.70 19.48/9.95
5 10% 30% 10% 10% 68.32/23.53 32.85/13.66 27.94/15.85 26.41/13.83 18.06/9.94 19.03/9.58
6 10% 30% 10% 30% 65.85/22.80 30.44/13.26 27.82/15.64 29.96/13.72 18.81/10.47 19.07/9.79
7 10% 30% 30% 10% 88.30/29.39 30.36/13.20 25.45/15.15 25.33/13.55 19.48/10.45 19.02/9.50
8 10% 30% 30% 30% 84.13/28.17 29.38/13.19 25.81/15.23 29.04/13.69 20.16/10.93 19.45/9.88
9 30% 10% 10% 10% 67.95/23.32 68.56/23.46 59.37/24.37 42.41/17.67 23.67/11.74 21.99/10.28
10 30% 10% 10% 30% 65.58/22.64 59.35/21.15 56.26/22.86 45.19/17.36 22.87/11.75 22.16/10.33
11 30% 10% 30% 10% 87.75/29.20 59.31/20.97 47.88/21.62 38.43/16.77 23.45/11.71 24.39/10.99
12 30% 10% 30% 30% 83.80/28.05 54.43/19.89 48.43/21.29 38.79/16.47 23.32/11.92 22.20/10.50
13 30% 30% 10% 10% 65.65/22.64 58.99/20.88 47.04/21.30 37.95/16.64 22.28/11.43 21.59/10.24
14 30% 30% 10% 30% 64.38/22.28 54.12/19.80 47.11/20.88 38.99/16.42 22.22/11.67 20.56/9.96
15 30% 30% 30% 10% 83.78/28.03 54.18/19.70 42.75/19.91 35.41/16.04 22.87/11.72 21.03/9.99
16 30% 30% 30% 30% 81.37/27.32 51.34/19.21 41.73/19.59 37.57/16.13 23.11/12.02 22.47/10.47

*The performance metrics in the table are displayed as MAE/SMAPE. The best results are highlighted in boldface.
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Table 4
Imputation Performance of All Models in Extreme Missing Scenarios

Scenario BM RM DM TM HA LRTC-TSpN TRMF BGCP LATC RTTC (Ours)

Guangzhou

H1 30% 50% 30% 30% 4.49/6.62 4.19/6.10 3.87/5.84 3.10/4.79 2.98/4.64 2.87/4.51
H2 30% 70% 30% 30% 4.49/6.63 4.36/6.32 3.75/5.80 3.09/4.79 3.01/4.70 2.98/4.67
H3 50% 50% 50% 50% 5.12/7.40 5.32/7.54 4.46/6.68 3.54/5.42 3.42/5.22 3.48/5.34
H4 50% 70% 50% 50% 5.18/7.51 5.46/7.70 4.18/6.36 3.57/5.46 3.52/5.36 3.69/5.59

London

H1 30% 50% 30% 30% 70.16/13.51 62.41/11.87 54.75/11.21 67.61/10.11 48.56/9.36 44.07/8.89
H2 30% 70% 30% 30% 70.29/13.48 62.66/11.93 55.90/11.52 56.05/9.87 50.72/9.74 45.19/9.22
H3 50% 50% 50% 50% 76.13/14.61 78.87/14.71 66.61/13.28 60.19/10.70 63.11/11.43 52.61/10.86
H4 50% 70% 50% 50% 76.98/14.71 80.03/14.93 66.38/13.45 56.81/10.70 73.37/13.21 58.71/11.94

Madrid

H1 30% 50% 30% 30% 206.42/22.27 226.51/22.68 125.77/16.59 94.64/12.54 90.36/10.86 63.40/9.79
H2 30% 70% 30% 30% 203.20/21.99 239.62/23.64 115.29/16.15 93.13/12.47 112.09/12.37 67.24/10.33
H3 50% 50% 50% 50% 233.94/24.84 306.54/30.34 168.59/20.98 108.97/13.88 177.85/16.40 95.08/13.19
H4 50% 70% 50% 50% 233.56/24.82 326.70/33.43 137.91/18.59 109.65/13.92 230.30/20.71 104.35/14.65

Melbourne

H1 30% 50% 30% 30% 79.40/26.74 48.93/18.78 41.97/19.78 35.50/15.88 23.26/12.33 23.32/11.57
H2 30% 70% 30% 30% 77.98/26.31 47.07/18.57 34.54/18.20 33.83/15.90 24.13/13.16 23.21/11.38
H3 50% 50% 50% 50% 91.86/30.37 59.89/23.94 57.77/24.34 40.50/17.20 33.60/16.51 30.65/13.72
H4 50% 70% 50% 50% 91.72/30.30 59.67/24.18 58.99/25.08 38.62/17.56 39.67/17.73 37.63/17.23

*The performance metrics in the table are displayed as MAE/SMAPE. The best results are highlighted in boldface.

with high missing rates, indicating its robustness over various missing patterns. For instance, the error gap between the1

best and the worst scenario in London for the proposed model is approximately 6.8 veh/15min. However, for LATC,2

the best base model in our experiment, the gap is around 11.4 veh/15min. The gap can be even larger for other models3

except historical average, which is robust but with higher imputation error.4

Compared with London and Madrid, the imputation error in Guangzhou and Melbourne is generally smaller, and5

the proposed model does not show discernible merit in scenarios with low missing rates, which could be attributed to6

less challenging traffic dynamics there. Clues can be found by recalling the distribution of singular values of all cities7

demonstrated in Fig. 5, where the primary singular values of Guangzhou and Melbourne show stronger dominance8

compared with the other cities, implying higher volatility and more pattern changes in temporal dynamics (e.g., see9

Fig. 2. Still, in these two cities, lower imputation error of the proposed model over base models can be noticed in10

scenarios with a high BM missing rate.11

It can also be concluded from the results that explicit or implicit temporal modeling is crucial to robust imputation12

under complicated missing scenarios. For models without temporal modeling, such as LRTC-TSpN, the performance13

is not satisfactory in most evaluation scenarios, potentially due to the permutation and scale invariance of matrix rank,14

which is an inherent limitation of the rank minimization paradigm. In other words, by minimizing the rank of a tensor,15

the solution remains unchanged regardless of the order and scale of fibers (analogous to columns/rows of matrix in16

higher order). Consequently, when many fibers or complete slices are missing, imputation models will find it difficult17

to properly recover missing values unless equipped with a time series prior.18

Among all missing patterns, RM, DM and TM are missing patterns that are easier to handle. An increase in the19

missing rate regarding these missing patterns, as per the tables, incurs limited perturbations in terms of the errors in20

most cases. In comparison, most models are more sensitive to changes in the missing rates of BM. Although models21

like TRMF, BGCP, and LATC are all embedded with time series models, they still suffer from discernible performance22

degradation or instability during imputation.23

In addition, the imputation performance of these models in extreme missing scenarios is also examined, as listed24

in Table 4. Four composite scenarios are constructed, where the composite missing rates of H1, H2, H3, and H4 are25

around 83%, 90%, 94%, and 96%, respectively. Across all models, there is an apparent increase in imputation errors26

in extreme missing scenarios compared with those in basic scenarios, particularly when composite missing rate goes27

beyond 90%. Nevertheless, RTTC can still consistently outperform base models in most of these challenging scenarios.28

It is also observed that imputation models with temporal modeling demonstrate greater robustness in these extreme29

scenarios, as evidenced by the lower imputation errors.30
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Figure 7: Sensitivity analysis on tensor ranks. For demonstration purpose, the imputation error is normalized to the same
level across cities. The axis label “Rank 𝑖” indicates the rank of factor matrix 𝑼𝑖. No box is displayed for Guangzhou data
when the mode-2 rank equals 11, as it exceeds the number of weeks in the data.

6.2. Sensitivity Analysis1

While the proposed RTTC outperforms base models in terms of accuracy and robustness, one may question its2

practical feasibility due to the requirement of tuning more hyperparameters. A sensitivity analysis was first conducted3

specifically focusing on tensor ranks for Tucker factorization, as demonstrated in Fig. 7. In general, most rank4

configurations do not exert a significant impact on the imputation error, showing an observable degree of consistency.5

Minor deviations do exist; however, the overall performance remains comparably stable against base models. There6

are also very few exceptions, where increases in imputation error can be noted, e.g., small rank values in Guangzhou7

data. This is possibly because of under-fitting with small rank values, which may limit the model from capturing all8

necessary details for accurately recovering the traffic dynamics. Therefore, in practice, a trade-off between quality9

and efficiency is needed for practical application. Nonetheless, thanks to the additional rank minimization, the risk of10

over-fitting for selecting a large rank value is minimized, which greatly relieves the burden of rank tuning compared11

with other tensor factorization-based models.12

Further sensitivity analysis was performed on other model parameters, encompassing coefficients 𝜇, 𝜆, 𝜉 and the13

norm parameter 𝛾 (see Fig. 8). In general, these hyperparameters do not exert a substantial effect on the imputation14

error, with the exception of the coefficient 𝜇. However, the impact of 𝜇 on imputation error is as minor as other15

hyperparameters when it is less than 1. This analysis underscores the robustness of the proposed RTTC in relation to16

hyperparameter sensitivity, suggesting that avoiding overly small rank values and overly large 𝜇 will suffice to achieve17

optimal performance, while the influences of other parameters remain mostly invariant.18

6.3. Decomposition & Factorization19

The embedded time series decomposition model allows us to distinctly segregate the temporal trend, spatio-20

temporal correlations, and outliers in the data using three components, namely trend, seasonality, and error. This21

not only enhances the accuracy of the imputation result but also provides us with a granular view of the temporal22

dynamics. Fig. 9 depicts the decomposed imputation result on an example time series of traffic volume. For clarity23
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Figure 8: Sensitivity analysis on other model parameters. For demonstration purpose, the imputation error is normalized
to the same level across cities.

of demonstration, the sum of the trend and seasonality components is shown as a blue curve in subfigure (a), which1

successfully reconstructs temporal dynamics with less than 30% of observations. The sole failure of imputation appears2

around Aug 2, 2019, when there is black-out missing nearby. Without additional information like events, it is reasonable3

to assume the volume retains the same pattern as those of the previous and subsequent days.4

Each of the three decomposed components plays a pivotal role in the imputation process. The trend component5

assigns a unique constant to every segment of the time series on the basis of changepoint detection, aiming to6

accommodate supply-side changes near a specific sensor that cannot be modeled by tensor factorization alone. In7

the given example, two changepoints, along with three segments, are identified. The decrement in traffic volume8

observed on August 14 aligns coherently with the trend reduction of the second segment. Conversely, the obvious9

drop in the third segment is not reflected in the changes in the corresponding trend value, which could be attributed to10

the seasonality component. By examining the volume profiles of other loop detectors, analogous volume drops were11

recorded. Such pattern is hence discerned by the seasonality component, which is responsible for handling cross-sensor12

correlations. Working in collaboration with the trend, the seasonality component is capable of modeling the periodicity13

in the temporal domain as well as the similarity amongst sensors. As demonstrated in subfigure (c), it can effectively14

distinguish between the weekday and weekend pattern, thanks to the four-way representation of tensor. Additionally,15

the error component adeptly captures outliers and minor fluctuations in data, thereby mitigating the adverse effects of16

anomalous observations on tensor factorization and rank minimization.17

Apart from the time series decomposition, the tensor factorization for the seasonality component can innately18

decompose the data into multiple basic elements, allowing for understanding the underlying patterns and structures19

within the data (Sun and Axhausen, 2016). In subsequent visualization, factor matrices are normalized, with the core20

tensor being scaled accordingly, for demonstration purpose. The core tensor  is showcased in Fig. 10, the shape of21

which, 30 × 9 × 5 × 20, corresponds with the prescribed Tucker rank. To visualize the four-way tensor, the tensor22

slices of the sensor (S) and time-of-the-day (T) modes are tiled along the week (W) and day-of-the-week (D) modes,23

where the suffix number indicates the indices of the latent patterns. The core tensor encodes the interactions across24
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modes; a larger value indicates a stronger interaction among the corresponding dimensions of modes. In terms of the1

week mode and the day-of-the-week mode, the core tensor is dominated by the leading entry and concentrates near2

the diagonal, which is displayed in the zoomed view. Such parsimony is induced by the 𝓁1-norm in the optimization3

objective, thereby limiting the interactions among modes and helping achieving a low rank result.4

One can further dig into the patterns in the factor matrices. Most interactions in the example above revolve around5

W1 and D1, and we therefore place the focus on the sensor-mode and time-of-the-day mode factor matrices, i.e., 𝑼16

and 𝑼4. The row factor in 𝑼1 corresponding to the example sensor is first extracted, as shown in Fig. 11 (a). Among7
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Figure 11: Visualization of factor matrices. (a) Sensor-mode row factor of the example sensor in the factor matrix 𝑼1.
(b) Time-of-the-day patterns in the factor matrix 𝑼4. The colored curves are the patterns with the most contribution.
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Figure 12: Average computation time across various missing scenarios.

all latent patterns, it can be observed that S10, S11, S15, S22, and S27 show more influence on the resulting tensor1

than others. Based on Fig. 10, the time-of-the-day patterns with the most interactions with those sensor patterns can2

be roughly identified as T9, T11, T12, T13, and T14, which are demonstrated in Fig. 11 (b). T9 shows an unimodal3

distribution with higher traffic during the daytime and the evening and lower traffic in the nighttime. Both T13 and4

T14 exhibit a bimodal distribution, with a morning peak at around 6:00–8:00 a.m. and an evening peak at around5

17:00–21:00 p.m. In comparison, T11 and T12 are flatter patterns going higher and lower, respectively, in the daytime.6

It should be noted that the proposed framework is primarily designed for missing value imputation rather than7

pattern discovery. The Tucker ranks selected for accuracy consideration may conflict with the purpose of interpretation,8

since they could be too high to be easily interpreted and no non-negative constraints are involved. Therefore, careful9

consideration should be given to the trade-off between imputation accuracy and interpretability, depending on on the10

focus of the practical application.11

6.4. Computation Time12

The average computation time across all missing scenarios of different models is demonstrated in Fig. 12. The13

experiments were performed on a workstation equipped with an Intel Core i7–13700K CPU and 128GB of RAM.14

Notably, LRTC-TSpN and TRMF are faster than others due to lower computational complexity. However, it should15

be noted that they also presented a higher imputation error and lower stability in complicated missing scenarios. In16

comparison, BGCP and LATC exhibit lower computational efficiency, which are constraint by the sampling process17

and autoregression model fitting, respectively. In general, the proposed model finished all imputation tasks within five18

minutes, which is similar to the computation time of LATC. The primary performance bottleneck of our model lies19

in solving the Sylvester equation for factor matrices 𝑼𝑚(𝑚 > 1). Details are discussed in Appendix C. Most other20

subproblems in our model have a relatively low time complexity. The 𝑼1-subproblem involves matrix operations,21

resulting in a complexity of (𝑁𝑅), where𝑁 =
∏

𝑖𝑁𝑖 is the total number of entries of the input tensor, and𝑅 =
∏

𝑖 𝑟𝑖22

is the total number of entries of the core tensor. The complexity of 𝑽 -subproblems is overshadowed by SVD of𝑾𝑚 with23
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a (𝑁𝑚𝑟2𝑚) complexity. Similar to 𝑼1, the -subproblem also has a (𝑁𝑅) complexity. The remaining subproblems1

of 𝑬, 𝒄, and 𝑿 involve only element-wise tensor operations, sharing a (𝑁) complexity.2

7. Conclusion3

In this paper, we addressed the pervasive problem of missing values in transport data, which undermines the4

integrity and efficacy of data-driven transportation analysis. As one of the most promising solutions to this problem,5

current tensor-based methods are still limited in terms of robustness facing complicated composite missing patterns.6

To amend this gap, we proposed a novel tensor-based imputation framework (RTTC) that integrates a time series7

decomposition model to simultaneously account for long-term trends, spatio-temporal correlations, and outliers in the8

data. The combination of tensor factorization and rank minimization also eliminates the need for exhaustive rank tuning9

in conventional tensor factorization-based methods. In addition, a Bregman ADMM algorithm is developed to solve10

the resulting multi-block separable nonconvex optimization problem efficiently.11

Experiments on four real-world transport datasets demonstrate that the proposed framework can outperform state-12

of-the-art imputation methods, especially in the presence of complex missing patterns with high missing rates. The13

results highlight the importance of integrating temporal modeling in tensor completion framework. Sensitivity analysis14

also underscores the stability of our framework with respect to hyperparameter settings. It is also demonstrated15

that the our framework has the potential of providing interpretable results from both the perspectives of time series16

decomposition and tensor factorization.17

Future work in this direction may focus on incorporating supplementary information to further assist imputation,18

such as road topology and weather conditions. Holidays and events can also be explicitly involved to inject additional19

knowledge for imputation. From a methodological perspective, the total variation regularizer for smoothing imputation20

results is not the ideal choice in the time series context. It is worthwhile to investigate better regularization for temporal21

modeling (Yang et al., 2021; Chen et al., 2022). Furthermore, non-negative constraints may also be helpful in enhancing22

the interpretability of the imputation framework.23
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Appendix A Hyperparameter Settings29

We show the hyperparameters of base models as follows. For LRTC-TSpN, we set norm parameter 𝑝 = 0.9, and30

decay rate 𝛽 = 2. The truncation rate is set as 𝜃 = 0.05 for Guangzhou dataset, and 𝜃 = 0.001 for others. For BGCP,31

we set tensor rank 𝑟 = 30. For TRMF, we set tensor rank 𝑟 = 10, and coefficients 𝜆𝑥 = 𝜆𝑤 = 𝜆𝜃 = 1. For LATC, we set32

truncation parameter 𝑟 = 10, and coefficient 𝜆 = 10−5. Finally, for our model, we used tensor ranks 𝒓 = {30, 9, 5, 20},33

coefficients 𝜇 = 0.1, 𝜆 = 0.1, 𝜉 = 1.0, and norm parameter 𝛾 = 0.01. Regarding model training, we trained all the34

models for at most 250 iterations with the convergence criterion 10−4. The updating step size 𝜌 of all the models was35

selected optimally from the range 10−2 to 10−5. Additionally, in our model, the coefficient of Bregman divergence 𝜂36

was always set to equal 𝜌. The optimal set of hyperparameters can be determined through Bayesian optimization with37

cross validation, as detailed in Bergstra et al. (2011), which is more efficient compared with traditional techniques like38

grid search. It’s noteworthy that although our method seems to have many hyperparameters, Section 6.2 demonstrates39

that their influence on imputation performance is minor.40

Appendix B Changepoint Detection41

The changepoint detection in our implementation is accomplished using the pruned exact linear time (PELT)
algorithm, which features high efficiency, scalability, and adaptability. The basic idea of PELT is to identify points
in the time series where the statistical properties change significantly. Formally, we consider a time series represented
by 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑁 ), which is normalized for zero mean and unit variance. Then consider a sequence 𝝉 =
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(𝜏0, 𝜏1,… , 𝜏𝑁𝜏+1), where 𝜏0 and 𝜏𝑁𝜏+1 mark the time series’ endpoints, while others constitute the index set of
changepoints. The changepoint detection optimizes towards the following objective function,

min
𝝉

𝑁𝜏
∑

𝑖=0
Cost(𝒙𝜏𝑖+1∶𝜏𝑖+1 ) + 𝛼Pen(𝝉), (51)

where 𝛼 > 0 is a balancing coefficient. The cost function Cost(𝒙𝜏𝑖+1∶𝜏𝑖+1 ) measures the homogeneity of each segment,
and the penalty function Pen(𝝉) is a complexity regularizer. In this study, a kernelized cost function with the Gaussian
kernel is employed (Arlot et al., 2019). The original times series is projected to the reproducing kernel Hilbert space
by the Gaussian kernel function 𝜅(⋅, ⋅) and a corresponding implicit transformation 𝜙(𝑥𝑖) = 𝜅(𝑥𝑖, ⋅) ∈ ℍ. The cost is
defined as the sum of squared distance between the segment and the its mean in the projected space,

Cost(𝒙𝜏𝑖+1∶𝜏𝑖+1 ) =
𝜏𝑖+1
∑

𝑗=𝜏𝑖+1
‖𝜙(𝑥𝑗) − 𝜙̄(𝒙𝜏𝑖+1∶𝜏𝑖+1 )‖

2
ℍ (52)

=
𝜏𝑖+1
∑

𝑗=𝜏𝑖+1
𝜅(𝑥𝑗 , 𝑥𝑗) −

1
𝜏𝑖+1 − 𝜏𝑖

𝜏𝑖+1
∑

𝑗=𝜏𝑖+1

𝜏𝑖+1
∑

𝑘=𝜏𝑖+1
𝜅(𝑥𝑗 , 𝑥𝑘).

Substituting the Gaussian kernel 𝜅(𝑥𝑖, 𝑥𝑗) = exp
(

−‖𝑥𝑖 − 𝑥𝑗‖2
) into the Eq. (52), the cost function can then be

rewritten as,

Cost(𝒙𝜏𝑖+1∶𝜏𝑖+1 ) = 𝜏𝑖+1 − 𝜏𝑖 −
1

𝜏𝑖+1 − 𝜏𝑖

𝜏𝑖+1
∑

𝑗=𝜏𝑖+1

𝜏𝑖+1
∑

𝑘=𝜏𝑖+1
exp

(

−‖𝑥𝑗 − 𝑥𝑘‖2
)

. (53)

For the penalty function, we directly relate it to the count of changepoints 𝑁𝜏 , which supports the linear time1

complexity of PELT. Since the number of changepoints are unknown beforehand, PELT works in a sequential way to2

evaluate the cost relating to each candidate changepoint. Detailed steps can be found in Algorithm 2.3

Algorithm 2 PELT Changepoint Detection
Input: Time series 𝒙, balancing coefficient 𝛼.
Output: Optimal changepoint set 𝑁 .
1: Initialize an array of changepoint sets  ← ∅; initialize an array of objective values  ← {−𝛼}; initialize an array

of candidates Θ ← {0}.
2: for 𝑡← 1, 𝑁 do
3: Find the best changepoint till 𝑡: 𝜏∗ ← argmin 𝜏∈Θ

(

𝜏 + Cost(𝒙𝜏+1∶𝑡) + 𝛼
).

4: Update objective value: 𝑡 ← 𝜏∗ + Cost(𝒙𝜏∗+1∶𝑡) + 𝛼.
5: Update changepoints: 𝑡 ← 𝜏∗ ∪ {𝜏∗}.
6: Prune the candidate set: Θ ← Θ ∩

{

𝜏|𝜏 + Cost(𝒙𝜏+1∶𝑡) ≤ 𝜏∗
}

∪ {𝜏∗}.
7: end for

Appendix C Solution to Sylvester Equation4

The Sylvester equation is the major computational bottleneck of the solution algorithm. In our experiments, the5

Bartels-Stewart algorithm was adopted (see Algorithm 3), with a time complexity of (𝑁3
𝑚). Despite the cubic6

complexity of this subproblem, the overall computation time is still acceptable — less than five minutes — for the7

test data with over 3 million entries. However, the soution efficiency can be further improved via Krylov subspace8

methods. The original formulation of the equation, 𝑨𝑼𝑚 + 𝑼𝑚𝑩 = 𝑹, can be first transformed into a linear system9

𝒮 (𝑼𝑚) = vec(𝑹) by defining a Sylvester operator 𝒮 (𝑼𝑚) = vec(𝑨𝑼𝑚 + 𝑼𝑚𝑩), where vec(⋅) is the vectorization10

operator. The resulting linear system can then be solved using conjugate gradient algorithm (Hestenes and Stiefel,11

1952), as given in Algorithm 4. The time complexity can be reduced to (𝑁2
𝑚𝑟𝑚), which is more efficient than standard12

Bartels-Stewart algorithm.13
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Algorithm 3 Bartels-Stewart Algorithm for 𝑼 -subproblems
Input: Matrices 𝑨, 𝑩, 𝑹.
Output: Updated factor matrix 𝑼 .
1: Compute real Schur decomposition of 𝑨 = 𝑸𝐴𝑻𝐴𝑸⊤

𝐴.
2: Compute real Schur decomposition of 𝑩 = 𝑸𝐵𝑻𝐵𝑸⊤

𝐵 .
3: Transform 𝑹 to new coordinates: 𝑹̃ ← 𝑸⊤

𝐴𝑹𝑸𝐵 .
4: Initialize 𝑼 with zeros having the same shape as 𝑹̃.
5: for 𝑖← 𝑁𝑚,… , 1 do
6: for 𝑗 ← 𝑟𝑚,… , 1 do
7: 𝑼(𝑖,𝑗) ← (𝑹̃(𝑖,𝑗) − 𝑻𝐴(𝑖,∶𝑖)𝑼(∶𝑖,𝑗) − 𝑼(𝑖,𝑗+1∶)𝑻𝐵 (𝑗+1∶,𝑗))∕(𝑻𝐴(𝑖,𝑖) + 𝑻𝐵 (𝑗,𝑗)).
8: end for
9: end for

10: Transform 𝑼 back to original coordinates: 𝑼 ← 𝑸𝐴𝑼𝑸⊤
𝐵 .

Algorithm 4 Conjugate Gradient Algorithm for 𝑼 -subproblems
Input: Factor matrix 𝑼 ; Sylvester operator 𝒮 ; matrix 𝑹.
Output: Updated factor matrix 𝑼 .
1: Initialize 𝒖 as vec(𝑼 ).
2: Initialize residual 𝒓1 ← vec(𝑹) − 𝒮 (𝑼 ); initialize search direction 𝒔1 ← 𝒓1.
3: for 𝑖← 1,… , 𝐾 do
4: Reshape 𝒔𝑖 as 𝑺𝑖.
5: Compute step size: 𝛼𝑖 ← ‖𝒓𝑖‖2∕(𝒔⊤𝑖 𝒮 (𝑺𝑖)).
6: Update vectorized factor: 𝒖𝑖+1 ← 𝒖𝑖 + 𝛼𝑖𝒔𝑖.
7: Update residual: 𝒓𝑖+1 ← 𝒓𝑖 − 𝛼𝑖𝒮 (𝑺𝑖).
8: Update search direction: 𝒔𝑖+1 ← 𝒓𝑖+1 + ‖𝒓𝑖+1‖2∕‖𝒓𝑖‖2𝒔𝑖.
9: end for

10: Reshape 𝒖𝑖+1 as 𝑼 .
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