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ABSTRACT
Calibrating DTA models is complex due to the involved indeterminacy, non-linearity, and di-
mensionality, restricting the application of conventional calibration approaches, especially for
larger networks. For this, Principal Component Analysis (PCA) is slowly establishing itself as
the new state of the art because it can greatly tackle two well known challenges - i.e. problem di-
mensionality and non–linearity. PCA application limits the optimization search space in a lower
dimension space, defined by orthogonal Principal Components, evaluated upon a set of historical
estimates. In this paper, we solve practical implementation problems for PCA–based calibration
techniques. Specifically, we formulate a data–assimilation framework to propose multiple OD
historical data–set generation methods which allows the use of PC–based algorithms in case
the historical data is irrelevant or unavailable, often the case for large–scale DTA models. Fur-
thermore, we propose a simplified problem formulation that leverages properties of the novel
data–set generation framework and helps for faster and more efficient calibration. The method-
ology is implemented using the PC–SPSA algorithm, which combines PCA with the popular
Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, commonly used to cal-
ibrate smaller networks. The approach is tested on one of the largest case studies reported to
date, the Munich metropolitan urban network, with encouraging calibration results. The pro-
posed data–assimilation framework can account for spatial, temporal, and day–to–day variations
in the demand. Different methods and combinations are tested and compared. The results sug-
gest that all these correlations should be used in order to avoid over–fitting issues. Furthermore,
the implementation properties of PCA and PC–SPSA are also explored using different sensitiv-
ity analyses to assess the toll and benefits of using PCA i.e., ease in SPSA hyper–parameter, role
of historical data–set generation parameters and the algorithm’s performance against different
target demand fluctuations. The analysis shows encouraging results for PC–SPSA robustness
and helps establishing simplified guidelines for implementing such PCA–methods practically on
large–scale DTA models.

1. Introduction1

Dynamic Traffic Assignment (DTA) models have been successfully applied as decision support tools for the eval-2

uation of traffic planning and traffic management solutions for many years. They not only offer the opportunity to3

estimate and predict the transport network traffic state, but also to evaluate different transport measures, therefore4

quantifying their effectiveness (Ben-Akiva et al., 2001; Mahmassani, 2001; Tampere et al., 2010). Given the impor-5

tance of these models, DTA calibration is a long–hauled research topic and the literature within the last decade is filled6

with many efforts trying to propose different calibration techniques with better application towards large DTA models7

(Balakrishna, 2006; Antoniou et al., 2009, 2015). Such a calibration problem is extremely complex as DTA models8

are highly non–linear and require a large set of parameters to be calibrated (Marzano et al., 2009).9

As a wrong demand pattern will also generate a biased simulation output, mobility demand is one of the most10

important inputs for a DTA model. Typically, mobility demand is represented as an Origin–Destination (OD) demand11

matrix, where each cell of the matrix represents the number of trips travelling from a certain origin to a certain des-12

tination, during a specific time interval. The main problem is that state of the art measurement systems, such as loop13
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detectors, measure the effect of the demand on the network rather than the demand itself (Frederix et al., 2011). As1

a consequence, practitioners usually turn to demand generation models in order to estimate the OD demand matrix2

(McNally, 2007). Although demand generation models provide an initial guess about the demand, the estimated OD3

matrix is at most an approximation of the average demand. Unfortunately, daily demand patterns show substantial4

fluctuations with respect to the average demand, because of partially predictable phenomena such as weather condi-5

tions (Balakrishna, 2006). These deviations can be corrected by using traffic measurements, such as loop detectors,6

to update the existing (a-priori) OD matrix. This problem, which is known in the literature as the Dynamic Demand7

Estimation Problem (DODE), searches for time-dependent OD demand matrices able to best fit measured traffic data8

(Cascetta and Postorino, 2001).9

Depending on the specific DTA application, several formulation frameworks have been proposed in the literature10

to solve the DODE problem. A first distinction is between offline (Balakrishna et al., 2007b; Cipriani et al., 2011;11

Antoniou et al., 2015; Osorio, 2019) and online models (Antoniou et al., 2007; Prakash et al., 2018; Cantelmo et al.,12

2020), where the former focus on medium-long term planning, while the latter are frequently adopted for real-time13

applications, such as route guidance. In addition, the DODE can be formulated as an optimization (Balakrishna et al.,14

2007b; Cipriani et al., 2011; Antoniou et al., 2015; Qurashi et al., 2019) or a state–space problem (Ashok and Ben-15

Akiva, 2000; Antoniou et al., 2007; Prakash et al., 2018; Cantelmo et al., 2020). The state–space formulation is16

especially used for capturing day–to–day dynamics (Zhou and Mahmassani, 2007) or for on-line demand estimation17

(Ashok, 1996; Ashok and Ben-Akiva, 2000). However, studies that implement a state-spacemodel in the context of off-18

line also exist (Balakrishna et al., 2005). Finally, we can further divide existing models into assignment–matrix based19

and assignment–matrix free algorithms (Cantelmo et al., 2014b). Assignment–matrix based algorithms explicitly use20

an analytical representation of the relationship between demand and traffic flows to estimate the most likely demand21

matrix (Cascetta and Postorino, 2001; Toledo and Kolechkina, 2012). However, this relationship is usually assumed22

to be linear. As this is not the case in reality, other authors proposed assignment–matrix free algorithms, using the23

DTA model to indirectly capture this correlation (Balakrishna et al., 2007b; Vaze et al., 2009). These models can be24

further divided into gradient–based (Cipriani et al., 2011; Antoniou et al., 2015; Qurashi et al., 2019) and gradient–free25

(Zhang et al., 2017; Osorio, 2019). Similarly, attempts to use Machine–Learning (neural networks) to solve the DODE26

problem have also been proposed (Wu et al., 2018; Krishnakumari et al., 2019).27

Regardless of the specific application, recent years have witnessed a shift towards assignment matrix–free meth-28

ods. Matrix–free algorithms solve two of the main issues common to all DODE formulations. First, they allow to29

accurately model the relationship between supply and demand. Second, assignment–matrix free formulations allow to30

incorporate any data source and do not require defining an analytical relationship between data and observations (e.g.31

between Bluetooth data and mobility demand). To include additional data is in fact a crucial aspect, as the DODE is32

traditionally a highly underdetermined problem, due to the fact that the number of variables to be estimated far exceeds33

the available amount of information (Marzano et al., 2009). One such approach, named ‘Simultaneous Perturbation34

Stochastic Approximation’ (SPSA) (Spall, 1998), has been one of the most popular algorithms for DTAmodel calibra-35

tion (Balakrishna et al., 2007a). SPSA, due to its ability to deal with non–linear and stochastic systems, a generalized36

problem formulation, and ease of implementation, has been used frequently by many researchers (Balakrishna et al.,37

2005; Cantelmo et al., 2014a; Barceló et al., 2010; Ros-Roca et al., 2021). However, conventional algorithms, in-38

cluding the SPSA, often fail in convergence with large–scale problems, because their performance deteriorates rapidly39

with the increase of the problem scale and complexity. For example, SPSA’s gradient approximation gets highly sen-40

sitive against: 1) definition of hyper–parameters (objective function gets more expensive, making trail–based setup41

infeasible); 2) more varying OD magnitudes, which increase exponentially with DTA model size and are also sparsely42

correlated with traffic measurements.43

Most of the literature, which aims to improve the application scalability of DTA model calibration, has followed44

twomajor domains i.e., reducing problem dimensions or reducing problem non–linearity (adding structural/correlation45

information in the objective function). Within the dimension reduction domain, approaches tend to reduce the number46

of estimation variables by e.g., using a statistical technique i.e. Principal Component Analysis (PCA) (Djukic et al.,47

2012; Prakash et al., 2018; Qurashi et al., 2019), using a correlation assumption i.e., quasi dynamic (Cascetta et al.,48

2013; Cantelmo et al., 2014b), clustering the model parameters (Tympakianaki et al., 2015), redefining the problem49

formulation i.e., utility–based formulations (Cantelmo et al., 2018, 2020). While, in the other domain of catering prob-50

lem non–linearity, approaches tend to add additional structural/correlation information spatially or temporally among51

model parameters and traffic measurements e.g., adding a weight matrix for correlation between ODs and network52

(Cantelmo et al., 2014a; Lu et al., 2015; Antoniou et al., 2015), using response surface methods or (physical) meta-53
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models which approximate the DTA simulation’s input/output relationship using differentiable analytical functions1

(Zhang et al., 2017; Osorio, 2019).2

Within all such efforts for improving the objective functions of different conventional approaches, the application of3

PCA stood out for being significantly more efficient in reducing problem dimensions (from the scale of 103 to 101) and4

non–linearity, as it transforms the OD vector into a lower dimensional space defined by orthogonal/uncorrelated PCs5

extracted from the variance of historical OD estimates. Hence, the application of Principal Component Analysis (PCA)6

has been widely adopted for both offline and online calibration problems to do dimension reduction. For DTA model7

calibration, it is first proposed by Djukic et al. (2012), followed bymany other approaches e.g., PC–GLS (Prakash et al.,8

2017), PC-EKF (Prakash et al., 2018), and PC–SPSA Qurashi et al. (2019). In all these PCA-based OD estimation9

frameworks, given a series of historical estimates, PCA leverages strong patterns and correlations to represent the10

problem with a few orthogonal/uncorrelated Principal Components (PCs) in a low dimensional space.11

PC–basedmethods, although being powerful and intuitive, strongly rely on the presence and quality of the historical12

estimates, by which they extrapolate estimation patterns. PCA provides a considerable advantage through dimension13

reduction, providing a lower dimensional search space based on PCs evaluated from historical data–set. Hence, ap-14

plication and performance of PCA–based methods is limited by the presence and quality/relevance of the historical15

data–set relative to the target solution. This in general is not possible for large–scale DTA models, for which such16

PCA–based methods are proposed, because conventional calibration techniques struggle to calibrate them and PCA17

application requires historical estimates. Considering this limitation, this paper aims to further explore, optimize, and18

establish better implementation methods for the application of demand estimation models based on Principal Compo-19

nent Analysis and PC–SPSA. First, we propose a newmethodology to use PC–basedmethods, when a reliable historical20

data–set is not available, including both cases of non–existent or irrelevant historical estimates. Then, we also establish21

a simplified problem formulation to define the objective function which alongside improving the computational times22

significantly, increases both the least error convergence and solution quality. Later, to test the novel procedures, we23

use the PC–SPSA algorithm to calibrate one of the largest case studies reported in DTA calibration literature i.e., the24

Munich city network. Comparisons among all different possible historical OD generation methods and conventional25

versus simplified problem formulation are performed to understand and depict the associated benefits. Later, to ex-26

plore and understand the practical implementation of PC–SPSA, we perform a series of sensitivity analyses focusing27

on two aspects. First, to test the ease of setting up SPSA hyper–parameters for PC–SPSA calibration. Second, to test28

the influence of different historical data–set characteristics (i.e., size, variance, and dimension reduction) and their29

quality/relevance with respect to target demand. Finally, using all different empirical results, we also propose a set of30

guidelines helpful to conveniently setup PCA based methods and PC–SPSA.31

Below, the contributes of this paper are further discussed in detail.32

1. Properties of Principal Component Analysis33

(a) Generation of historical OD estimates: This paper contributes to define a data-assimilation framework34

for both generating historical estimates data–set and controlling their quality. As mentioned above, PCA,35

using the historical data–set, extracts a set of PCs, which are then used to transform and estimate the model36

parameters in a lower–dimensional space, restricting the search space of the model. Hence, the applica-37

tion and performance of any PCA–based method is limited by the presence and quality of these historical38

estimates. The data–assimilation framework proposed in this paper explores all possible correlation in the39

existing demand matrix and generates a set of (artificial) historical estimates from a given historical OD40

matrix. In addition, this method also provides the possibility to derive these correlations from different41

available data sources which can help further reduce the residual errors.42

(b) Simplified problem formulation: This paper proposes a simplified problem formulation for DODE. Since43

OD demand cannot be observed and the DODE problem is under–determined, the objective function com-44

prises two minimizing error terms: the error between simulated and traffic measurements and the one45

between calibrated and initial OD estimate. The second term constraints the calibrated OD demand from46

moving away off the starting estimate and overfitting the traffic data. It also limits the calibration perfor-47

mance due to added noise and complexity in the objective function. We show in this research that the appli-48

cation of PCA does not require to constraint the calibrated OD pattern, as the proposed data-assimilation49

framework allows to include information about the historical matrix directly into the principal compo-50

nents, even when historical estimates are not available. The search space is therefore already restricted by51
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the variance of historical data–set, hence the DODE problem formulation can be simplified by using only1

the error term between traffic measurements. Comparisons between the simplified and the conventional2

problem formulation show that simplified formulation requires significantly lesser number of iterations and3

converges to the least error and best OD solution quality. That because, conventional formulation leads to4

a sub-optimal solution due to an over representation of the historical demand in the objective function.5

2. Implementation properties of PC–SPSA6

(a) Ease of hyper–parameters tuning: This paper performs sensitivity analyses for robustness of PC–SPSA7

against SPSA hyper–parameters. Although (Spall, 1998) has proposed general guidelines for SPSA hyper–8

parameters definition, there is no set rule to define these parameters generically for SPSA and its variants.9

Besides, even other approaches that aim for calibrating large scale DTAmodels require regress effort to set10

up specific to a DTA model (e.g., defining appropriate metamodel functions (physical metamodel as per11

(Zhang et al., 2017; Osorio, 2019)), create network correlation weight matrices (Antoniou et al., 2015)).12

In previous studies, sensitivity analysis was often use to identify case–specific SPSA hyper–parameters13

(Cantelmo et al., 2014a). In this research, we show that PC-SPSA converges on high quality solutions14

even when a sub–optimal set of hyper–parameters is used. This advantage of skipping problem-specific15

manual input, especially with large–scale DTA models, is the reduction of additional computational effort16

for running simulations repeatedly during this trial/definition phase. In this paper, we show that PCA gives17

the ease to tune SPSA’s hyper–parameters because of showing significant robustness to a range of different18

hyper–parameter values.19

(b) Value of added structural information: Many literature approaches use different techniques to add in-20

formation within the objective function for improving their application scalability (Antoniou et al., 2015;21

Cantelmo et al., 2014a; Tympakianaki et al., 2018; Osorio, 2019). Similarly, PCA also incorporates OD22

structural patterns from the historical estimates to reduce non–linearity and computational requirements.23

But how to implement PCA in real-life applications is still an open question. It requires determining the24

optimum number of historical estimates, the effect of the amount of variance present in the system, and25

the optimum amount of PCs. Defining these set of hyper–parameters adds up as a requirement due to the26

PCA application. Hence, in this paper, we perform multiple sensitivity analyses to measure the impact of27

varying historical data–set characteristics (i.e., size, variance, and number of PCs) on PC–SPSA calibration28

performance. The analysis helps to understand the value of structural information added in the objective29

function. It also provides directions to control model over fitting.30

(c) Computational efficiency: Most calibration methods, let alone their capability to calibrate large–scale31

networks, require significant computational efforts due to the higher simulation run–times, large set of es-32

timation variables, and iterative nature. Methods proposed in this paper address this practical challenge,33

and calibrate one of the largest calibration experiment for DODE to date i.e., theMunich network. First, the34

results show the direct benefits of PCA i.e., the increase in dimensionality and non–linearity/complexity35

for Munich network doesn’t directly translate into an equivalent increase in optimization complexity and36

estimation variables. Moreover, exploiting PCA properties, the ease of SPSA hyper–parameters tuning37

eliminate the need of recursive simulations for trail–based setting. Similarly, we also eliminate the re-38

quirement of using multiple gradient replications in SPSA (otherwise used in all SPSA methods to remove39

gradient biased). Also, the simplified problem formulation provides significant improvements for the re-40

quired number of iterations. Hence overall, the calibration of Munich network is shortened between 2-641

iterations with practically almost 1 simulation run–time required per iteration (with parallel replications42

and SPSA gradient evaluation), making PC–SPSA even feasible for online calibration.43

The rest of the paper is structured as follows. Section 2 describes the overall methodology followed in this research.44

After introducing PCA in the OD estimation context, we discuss the proposed data-assimilation framework for histor-45

ical data matrix generation, the simplified problem formulation, and our implementation of PC–SPSA. Then, section46

3 describes the experimental setup, network case study, and the calibration results for PC–SPSA. It also includes the47

comparisons for different historical OD generation methods and conventional versus simplified problem formulations.48

Later, section 4 covers the sensitivity analyses performed on PCA and PC–SPSA implementation properties alongside49

the guidelines for their setup. Finally, section 5 concludes the paper describing the overall contributions and findings50

of the research alongside its future implications and possible research directions.51
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2. PCA based OD estimation1

Principal Component Analysis (PCA) is already a standard for problem dimension reduction. It allows to dimen-2

sionally reduce a large set of decision variables � or x (i.e., the starting OD vector for DODE) into few number of3

PC–scores using a lower dimensional space. This space is defined by a set of Principal Components (PCs) estimated4

by the application of PCA on the time series historical data of the decision vector. The optimization problem is then5

formulated and estimated using the PC–scores, solved by a suitable optimization approach. For OD estimation, Dju-6

kic et al. (2012) is the first to apply PCA on the time series OD matrices, extracting the spatial–temporal correlation7

among different OD pairs. Although the idea of PCA’s application is of dimension reduction, it also gives other fa-8

vorable properties. For example, it gives an orthogonal/uncorrelated OD demand representation which otherwise is9

sparsely correlated and it keeps the search space limited in the variance captured from historical estimates resulting in10

good quality OD solutions.11

2.1. Dimension reduction12

Principal Components (PCs) are linear vectors combinations containing the variance information of a time series13

data. All PCs have their subsequent coefficients (named ’PC–directions’) which define the amount of variance captured14

by them. The value of these PC–directions decrease in an ascending order i.e., the first PC captures the highest sample15

variance in the data followed by the second PC with the second–highest variance captured and soon. The estimation16

of PCs requires a time series OD demand information which can be supplemented using historical OD estimates (cali-17

brated offline or online). Given the availability of historical estimates, they are set in a data matrixD with dimensions18

[nk × nx], where nk is the number of historical data points and nx is the size of OD vector estimate. Then, Singular19

Value Decomposition (SVD) is applied on this historical data matrix D to evaluate the PCs, given as:20

D = UΣV T (1)
The unitary matrix V with dimension [nx × nx] contains vectors of the orthogonal PCs and their corresponding21

PC–directions are stored in the rectangular–diagonal matrix Σ with dimension [nk × nx]. U is a [nk × nk] unitary22

matrix with orthogonal vectors. A time series historical estimates data–set of nk data points result in nk PCs (Djukic23

et al., 2012), hence the first nk columns of unitary matrix V are PCs and the diagonal nk values of matrix Σ are their24

PC-directions. The evaluated PCs can be further reduced to retain only the first few significant PCs nd , which can25

explain most of the time series variance from the historical estimates (Djukic et al., 2012), hence V is further reduced26

to V̂ :27

V̂ = [ v1 v2 v3 ... vnv ] (2)
The starting OD vector x (otherwise used directly for estimation) is transformed into a lower dimensional PCs28

space. The reduced V̂ unitary matrix containing nv significant PCs is used to transform x into to set of PC scores z of29

dimension [nv × 1], as:30

z = V̂ T x (3)
These PC scores are instead then used for estimation, while the OD vector can be re–approximated as:31

x ≈ V̂ z (4)
2.2. Historical data matrix generation32

Historical OD estimates used for estimating PCs are critical for application of PCA–based methods. These his-33

torical estimates should be relevant temporally (i.e., day–to–day historical estimates of the same time intervals ( =34

{1, 2, ...ℎ}), to ensure similar OD spatial/structural patterns as of the target solution. This implies that different histori-35

cal data–sets should be constructed between e.g., morning and evening peak hours, peak and off–peak hours, weekdays36

and holidays. If relevant estimates are not available then PCA–Based models will give poor quality solutions. Setting37

the relevance property aside, the existence/availability of historical OD estimates is even more critical (especially for38

large scale DTA models). As stated before (under section 2.1), it is evident from the literature that conventional mod-39

els, such as SPSA, are in fact not capable of being used to calibrate large–scale networks and therefore the presence of40

calibrated/estimated historical OD data–set is impractical, hence limiting the use of PCA–based techniques in practice.41
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In this section, we propose a data-assimilation framework for applicability of PCA–methods in scenarios of irrele-1

vant or non–existing historical estimates. In such scenarios, there exists a possibility to synthetically generate historical2

OD estimates using the available OD estimate. As discussed previously, PCA limits the search space by projecting each3

OD pair into a few principal components capable of explaining their variance. Traditionally, principal components are4

obtained from time series of data - i.e. the historical estimates. The data assimilation framework allows to incorporate5

historical information from one single historical demand matrix into the principal components of the problem. This6

means that, while previous approaches rely on historical estimates, in this case the Principal Components represent the7

historical (seed) matrix, which can be easily obtained with any demand model, from the gravity model to Synthetic8

Population. Given a single demand matrix x, we perturb the demand and artificially generate variations within the9

data. Different types of demand fluctuations are considered, such as spatial, temporal, and day–to–day variations. This10

allows us to use PCA–based algorithms, without even the need to first obtain the historical estimates, which is often11

infeasible in practice. Additionally, by artificially perturbing the demand in three different dimensions, the proposed12

approach allows to have control over the search space definition (e.g., define a narrow search space if small variations13

are assumed and hence good OD quality is retained in reference to the initial OD estimate; or a broader search space14

with more variance is considered in case the model error does not converge to a good solution).15

2.2.1. Correlations among time–dependent OD flows16

Dynamic OD demand is mostly represented as time-dependent OD flows (x1, x2, ..., xh), which are individual sets17

of OD matrices x each representing a single time interval ℎ. Demand fluctuations among such time–dependent OD18

flows can correlate in three possible dimensions. Figure 1 presents the conceptual directions for each of these three19

correlation dimension in a OD demand time series plot, where each vertical vector represents a single time–dependent20

OD for a given time interval. Further, we describe these dimensions as:21

• Spatial correlation: The spatial correlation presents the spatial structure of the OD demand over the network,22

i.e., how all the OD pairs xnij are spatially correlated among themselves. This correlation dimension should help23

in capturing the demand fluctuations triggered spatially e.g., the changes in trip distribution among different OD24

pairs. The source of these fluctuations can variate from long–term changes of land-use to short–term changes25

in trip attractions and distributions among OD pairs due to consistently varying network travel times or traffic26

congestion patterns.27

• Temporal correlation: The temporal correlation presents the times series evolution of demand, i.e., the time–28

dependent fluctuations of each OD pair xnij between all time intervals t (or previously said = 1, 2, ...ℎ). This29

correlation dimensions helps in capturing the demand fluctuations or distributions for departure time choice of30

the overall demand for each OD pair. Individual departure time choice decisions depend on factors such as trip31

purpose/activity, network state/congestion and person demographics.32

• Day–to–day correlation: Mobility demand is correlated to the demand for activities. As such, it follows a33

structure and day–to–day variations are likely to occur. Hence, day–to–day correlations presents the correlation34

of each OD pair xnij among different days d. This correlation dimension should capture the day–to–day demand35

fluctuations for individual OD pairs due to change in their trip generation/attractions for different trip activities36

which are influenced by e.g., day–of–the-week, weather conditions, seasons, special events like sales, festivals,37

sport events etc.38

2.2.2. Historical data–set generation methods39

After developing our understanding on the above mentioned correlation dimensions for time–dependent ODs, we40

consider that the demand fluctuations within the historical OD estimates should naturally follow these correlations.41

Hence, synthetic historical data–sets can be generated by perturbing the starting OD vector x among them. Since,42

these three correlation dimensions cover the possible user behaviors, we propose six different historical OD generation43

methods exploiting them. Intuitively, more correlations should lead to a more realistic representation of the behaviour.44

However, this will also requires a larger time series, which also means more principal components and therefore more45

variables to be calibrated. To mathematically express the proposed methods, we first define the utilized notations in46

table 1, followed by the definitions of all methods.47
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Figure 1: Different correlation dimensions among time–dependent OD flows

Table 1
List of Symbols

D Historical data matrix with dimensions [nij × (ntnd)]
�T Perturbation matrix for correlation of type T
x Current/prior OD estimate matrix with dimensions [nij × nt]
X Augmented matrix of multiple x sets with dimensions [nij × (ntnd)]
od, t,d Gaussian distributions of size nij , nt and nd , mean � and standard deviation �
Rod , Rt Perturbation/weight coefficient for sizing the effect of spatial and temporal correlation variance
Rmin The smaller value within Rod and Rt
nij , nt, nd Number of OD pairs, time intervals and historical days

• Method 1: Spatial correlation
This method considers the spatial correlation to generate the historical OD data–setD. The perturbation matrix
�od is generated usingod Gaussian distribution. The mathematical expression is given as:

D = (1 + Rod�od)⊙X (5)
where X is an augmented matrix given by:

X = (x|x|… |x)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

nd

(6)

while x is the initial OD estimate matrix of nij OD pairs and nt time intervals. The ⊙ operation achieves the1

Hadamard (element-wise) product to perturb the augmented matrix X. Note that, Rod is the perturbation factor2

for sizing the effect of perturbation matrix �od .3

• Method 2: Temporal correlation
This method considers the temporal correlation to generate the historical data–set D. The perturbation matrix
�t is generated usingt Gaussian distribution. The mathematical expression is given as:

D = (1 + Rt�t)⊙X (7)
where Rt is the perturbation factor for sizing the effect of perturbation matrix �t.4
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• Method 3: Spatial and temporal correlation
This method considers both spatial and temporal correlations to generate the historical data–set D. The pertur-
bation matrix �od,t is generated using the Gaussian distributionsod andt in spatial and temporal directions
(see fig. 1). The mathematical expression is given as:

D = (1 + Rmin�od,t)⊙X (8)
whereRmin is the lowest of the perturbation factorsRod andRt for sizing the effect of perturbation matrix �od,t.1

• Method 4: Spatial and day–to–day correlation
This method considers both spatial and day–to–day correlations to generate the historical data–set D. The per-
turbation matrix �od,d is generated using the Gaussian distributions od and d in spatial and day–to–day
directions (see fig. 1). The mathematical expression is given as:

D = (1 + Rod�od,d)⊙X (9)

• Method 5: Temporal and day–to–day correlation
This method considers both temporal and day–to–day correlations to generate the historical data–set D. The
perturbation matrix �t,d is generated using the Gaussian distributions t and d in temporal and day–to–day
directions (see fig. 1). The mathematical expression is given as:

D = (1 + Rt�t,d)⊙X (10)

• Method 6: Spatial, temporal and day-to-day correlation
This last method considers all possible correlation dimensions possible in time–dependent ODs. To estimate the
historical data–set D. The perturbation matrix �od,t,d is generated using the Gaussian distributions od , t
and d in spatial, temporal and day–to–day directions (see fig. 1). The mathematical expression is given as:

D = (1 + Rmin�od,t,d)⊙X (11)

The six proposed generation methods capture all possible combinations between spatial, within–day temporal and2

day–to–day temporal correlations. Note that, in current methodology we use Gaussian distributions with zero mean to3

define the perturbation matrices ΔT but an additional value of these generation formulations is that these correlation4

distributions (currently od , t, and d) can be derived by other data sources, such as mobile phone network data5

and survey data. Finally, this leads to a framework that is more general - as it does not depend on an historical database6

- and is more flexible - as the structure of the PCs would reflect both OD flows as well as other spatial-temporal7

dynamics.8

2.3. Simplification of DODE problem formulation9

The DTA calibration problem is generally formulated as an optimization problem, minimizing the specified ob-10

jective function by optimizing the model parameter values with the given constraints (to decide a feasible parameter11

space). A generic problem formulation for DTA model calibration is given as:12

Minimise
�,x

z(y, y′, x, xp, �, �p) (12)

Where y/y′ represent the observed/simulated traffic measurements, x and � indicate the current values for the13

origin–destination demand flows and for the behavioural parameters, respectively, while xp and �p are their his-14

torical (or prior) estimates. The traditional DODE problem focuses on only estimating time–dependent OD flows15

{x1, x2, ..., xℎ}, while other model parameters � are kept constant. The objective function formulation for time-16

dependent DODE problem can be reformulated as:17

Minimise
x

ℎ=1
∑

H
[w1z1(yh, y′h) +w2z2(xh, x

p
h)] (13)
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subject to:
y′h = f (x1, ...xh; �;G1, ..., Gh)
lx ≤ x ≤ ux

where the calibration time period is defined in intervals  = {1, 2, ...,H} and:1

xh ∶ Time–dependent demand parameters i.e., OD flows
yh ∶ Observed time–dependent traffic measurements
y′h ∶ Simulated time–dependent traffic measurements
� ∶ Other fixed DTA model parameters
xph ∶ Prior values for time–dependent demand parameters i.e., OD flows
Gh ∶ Road network and other supply parameters

The minimization of the DODE objective function (equation 13) heavily relies on z1, which measures the goodness2

of fit between observed and simulated traffic measurements, while z2 (i.e., the goodness of fit between estimated and3

prior OD demand) help to restrain the estimated solution closer to the prior/starting OD. The weight factors w1 and4

w2 are used to scale the reliance (or reflect uncertainty) on both observed traffic measurements yℎ and prior OD flows5

xpℎ information. The simulated traffic data y′ℎ detected in time interval ℎ are explicitly modelled through a (non-linear)6

function f (⋅) (i.e., DTA simulator) of all OD flows x, model parameters � and the road network/supply parameters till7

time interval ℎ. Using this optimization–based problem formulation with any non-assignment based approach provides8

an advantage of including any available traffic data yℎ for estimation (requiring f (⋅) to be a DTA simulator).9

Since the nature of DODE problem is highly underdetermined (far more estimation variables against traffic mea-
surements), reliance on using z2 can be seen throughout the literature because its keeps the calibrated OD solution
close to the prior/starting estimate, considering it the most reliable available estimate. For PCA–based models, we
propose to simplify the DODE formulation releasing the z2 error term. This is a generalization of PCA–based models
where the use of PCs help us include historical OD information in the objective function, allowing us to release z2from equation 13 and simplify the DODE problem formulation (equation 14). It also allows to simplify the problem
through dimension reduction (as we solve it in PC space). The new simplified problem formulation is given as:

Minimise
x

ℎ=1
∑

H
[z1(yh, y′h)] (14)

subject to:
y′h = f (x1, ...xh; �;G1, ..., Gh)
lx ≤ x ≤ ux

This simplification is possible only by the use of PCA, where previously the standard approach (equation 13)10

requires the term z2 to include prior information about the historical demand. This information, however, is already11

included within the PCA components, where the vector of Principal Components V̂ is in fact directly obtained by the12

time series historical demand, which means that the PCs defined search space is already constrained within the variance13

present in the historical estimates. This keeps all the patterns of the calibrated OD estimate within those present in14

historical estimates, which is also the purpose of using the error term z2. Hence, for all PCA–based methods, the15

purpose of using the error term z2 is already fulfilled by PCA’s dimension reduction.16

2.4. Estimation setup17

As discussed before in section 1, SPSA is arguably the most popular assignment matrix–free method due to its18

generalized problem formulation and ability to deal with non–linear and stochastic systems. Therefore, to demonstrate19

the significance of the proposed PCA methods, we choose it as the optimization problem solver to estimate the DODE20

problem formulated in PC space (Qurashi et al., 2019). Below, we describe the SPSA setup for PCA–based DODE and21

emphasize on the ease in requirement of defining SPSA hyper–parameters alongside proposing some modifications to22

exploit the properties of PCA application. Similarly, we also discuss the PCA application setup to understand the role23

of new hyper–parameters required to define the characteristics of historical data matrix and dimension reduction.24
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2.4.1. SPSA for PCA–based estimation1

SPSA (Spall et al., 1992) is a Stochastic Approximation (SA) algorithm with a unique advantage of approximating2

a noisy gradient with only two objective function evaluations using simultaneous perturbation. Qurashi et al. (2019)3

proposed a modified SPSA to solve PCA–based DODE problem. Equation 15 shows the modified gradient estima-4

tion method to estimate PC–scores z, where Δ is a p-dimensional vector generated randomly from a ±1 Bernoulli5

distribution (where P is the length of decision vector zk).6

g′ =
f (zk + zk × ck�k) − f (zk − zk × ck�k)

2ck

[

Δ1 Δ2 . . Δp
]T (15)

The estimated gradient is used to minimize the solution using a modified form of SA approach (equation 16).
zk+1 = zk − zk × akg′k(zk) (16)
ck = c∕k
 ak = a∕(k + A)� (17)

Note that, the coefficients of perturbation ck and minimization ak evolve over the number of iterations  =7

{1, 2, 3, ...k} and are evaluated based on the set of pre–defined hyper–parameters c, a, 
 , �, and A (equation 17).8

Apart from the general guidelines proposed by Spall (1998), their is no set rule to define these hyper–parameters for9

SPSA or any of its variants. Hence, it requires a trail–based method to find appropriate values which can result in10

good convergence. When combining PC-SPSA with the data–set generation method proposed in Section 2.2.2, the11

number of hyper–parameters further increases, as the model requires to define both the number of historical estimates12

nd as well as the mean and the variance for the spatio/temporal distributions od ,t,d , which regulate the link13

between historical demand and PCs. However, the application of PCA drastically reduces the required number of14

iterations (Qurashi et al., 2019) and the modified SPSA (equation 16) applies a percentage change instead of abso-15

lute increase/decrease in estimation variables zk, as in the traditional SPSA. Therefore, the sensitivity of the model16

to changes in the hyper–parameter decreases significantly. as shown in Section 4.1. Additionally, by combining the17

proposed data–set generation method with the simplified formulation discussed in Section 2.3, the number of iterations18

of PC-SPSA futher decreases making the calibration of the parameters 
, � andA unnecessary, as the model converges19

for a low value of k. Finally, SPSA requires multiple gradient replications for DODE (Balakrishna et al., 2007b) and20

almost all SPSA based literature works use it to reduce gradient bias (e.g., Cantelmo et al. (2014a); Tympakianaki et al.21

(2015)) due to correlations and non–linearity present in DODE variables. We show in this paper that this becomes22

unnecessary with PCA because all PCs are orthogonal and uncorrelated. Hence, we also propose to remove this re-23

quirement and all experiments ran in this paper use only a single gradient estimate per SPSA iteration. A step–wise24

PC–SPSA algorithm is given in appendix 1.25

2.4.2. PCA application setup26

Recalling from section 2.1, to transform the OD flows in lower dimensional space, PC–directions V T are used.27

These PC–directions are evaluated from the historical data matrixD (see equation 1) and represent the variance present28

in it. Note that, the optimization search space for PCA–based methods is confined within this variance. In other29

words, it is the additional demand information added to the DODE objective function. Hence, it is important to better30

understand the impact of this added variance information and control it characteristics accordingly. The variance31

present in PC–directions can be controlled by certain parameters which define the characteristic of historical data32

matrix D. These parameters include the number of historical estimates i.e., size nd of data matrix D (equation 6),33

number of PCs retained nv (equation 2), and control of the variance present in historical estimates (defined by R and34

� from equation 5-11, i.e., in case of using historical generation methods). Note that, both in case of availability or35

unavailability of historical OD estimates, the variance information can be controlled. But, it also increases the overall36

set of required hyper–parameters for manual setup.37

3. Case study: Munich city38

3.1. Experimental setup39

3.1.1. Network and simulation setup40

We implement the case study on theMunich regional network (about 900 km2). As shown in Figure 2, the network is41

divided into 73 zones resulting in 5,329 OD pairs, including 10 external zones (green circles) at major radial motorways42
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entering the city. The network consists of a total of 8,761 links (Figure 4), excluding residential roads to reduce the1

route choice burden for the simulation experiment. A total of 507 detector locations are used for the case study. As2

described previously, this leads to a highly underdetermined system (5,329 unknowns per interval with only 507 traffic3

measurements) and renders the application difficulties of conventional calibration methods.4

An open–source traffic simulator, Simulation of Urban MObility (SUMO, Lopez et al. (2018)), is assembled with5

the proposed calibration algorithm for experiments. All simulations are implemented at the mesoscopic level via the6

trip–based (one–shot) stochastic user route choice assignment method. To focus on DODE problem, we fix the route7

choice and supply side parameters (e.g., jam threshold). Also, to cater for the stochasticity of the traffic simulations8

we used outputs averaged from 10 simulation replications. Overall, the run–time for a single simulation (for morning9

peak hours i.e., 6am - 10 am) is 12 minutes and the 10 simulation replications are run in parallelization. One iteration10

of SPSA needs minimum 2 simulation run–time of 24 minutes. Given the sizes of the network, SPSA cannot be used to11

calibrate the DTA model. Additionally, historical estimates are not available as the network has never been calibrated12

before. Therefore, we use the procedure explained in section 2.2.2 combined with the PC–SPSA algorithm to calibrate13

the network under the simplified problem formulation, described in section 2.3.14

Figure 2: Traffic zones of Munich major region.
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Figure 3: Network Demand (6 am to 10 am)

3.1.2. Demand scenarios15

To explore the effectiveness and efficiency of PC–SPSA on the DTA model calibration problem, we apply PC–16

SPSA to calibrate the demand from 6 am to 10 am represented in 15–minute intervals, which contains characteristics17

of very low demand (6 am – 7am), normal off–peak (8 am – 10 am) and peak traffic (7 am – 8 am). To process18

the procedure, we specify the demand scenario following the benchmarking framework standardized by Antoniou19

et al. (2016) for testing calibration algorithms. The method has also been used in many recent works on developing20

calibration algorithms (Qurashi et al., 2019; Cantelmo et al., 2020). To create the scenario, the target/true demand21

is synthetically perturbed with the latest previous estimate xp1 and its simulated outputs are taken as true outputs.22

Two coefficients of reduction (Red) and randomization (Rand) are used for perturbation. Different values of these23

two coefficients are used to create different types of true demands as in reality. The demand scenario generation is24

specifically expressed as:25

xc = (Red + Rand × �) × xp1 (18)
where � is the random perturbation vector following Gaussian distribution. In this case study, we apply Red = 0.726

and Rand = 0.15 (i.e., xc = (0.7 + 0.15�) × xp1 ), and � ∼ N(0, 0.333) (99.7% of values located in [-1,1]), resulting27

in the demand distribution shown in Figure 3 (aggregated into one hour for easy illustration).28

M. Qurashi et al.: Preprint submitted to Elsevier Page 11 of 27



Dynamic demand estimation on large scale networks using Principal Component Analysis

Figure 4: Used Munich Network overview

3.1.3. PC–SPSA algorithm settings1

Recall Equation (17), we need to update the gains for perturbation (ck) and minimization (ak) to control the step2

size and convergence at each step. In all following experiments, A, � and 
 are set to be 25, 0.3 and 0.15, respectively.3

For the experiments within this section, c and a are set to be 0.15 and 1, respectively. Note that, c and 
 control the4

perturbation percentage of the PC–scores. For example, at the first step, the PC-scores are perturbed with ±(15%).5

On the other hand, a, A and � control the actual moving step in the searching space. All historical data–set generation6

methods introduced in Section 2.2 are applied for comparison, for which Rod , Rt, and Rd are set as 0.3, 0.4 and 1,7

respectively, while the Gaussian distributions od , t, and d are generated using ∼ N(0, 0.333) setting. The8

demand of 100 historical days is thus generated. Furthermore, to reserve enough variance contained in the historical9

data–set for tracking the patterns and achieve the goal for dimension reduction at the same time, the number of PCs10

expressing 95% of the total variance are used.11

3.1.4. Goodness of fit12

Given that PC–SPSA is a non-assignment matrix based algorithm it requires the DTAmodel simulation to map the13

ODmatrix into measurable traffic measurements, such as vehicle counts recorded by detectors. These generated traffic14

counts are then compared with the observed traffic counts to evaluate their difference which is used as an indicator for15

DODE minimization (i.e., z1 in equation 14). In this study, we apply Root Mean Square Normalized error (RMSN) to16

measure the Gof of the simulated traffic counts and thus evaluate the estimated OD matrix. RSMN is specifically used17

extensively for DODE problem (Qurashi et al., 2019; Antoniou et al., 2015) because it finds the normalized root mean18

distance between all counts helpful to estimate closer patterns towards the target solution. The calculation of RMSN19

is given by:20

RMSN =

√

n
∑n
i=1(ŷi − yi)2
∑n
i=1 yi

(19)

where y and ŷ are the observed traffic counts and simulated traffic counts, respectively. n is the number of detectors.21
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3.2. Results1

3.2.1. Convergence analysis and calibration quality2

Figure 5 displays PC–SPSA’s convergence results for calibrating 15-minute demand intervals of the peak hour3

from 7 am to 8 am as shown in fig. 3. The results include convergence plots for all six historical OD generation4

methods described in section 2.2.2. Despite the large study area, PC–SPSA is able to converge to a low RMSN error5

values within the first few iterations, confirming the improved application scalability of PC–SPSA on large scale DTA6

models. Figure 6 illustrates the quality of model calibration comparing observed and simulated traffic counts at all7

detector locations using a 45◦ plot. The results depicted are only for method 6 (figure 5). We refer to section 3.2.28

for the discussion on the differences between the six method. Since all points are aligned closer to the 45◦ line, it9

is confirmed that the low error convergence is achieved at all detector locations. Figure 5 also shows that, while all10

generation methods perform fairly well, some of the proposed methods obtain drastic improvements in only one or two11

iterations.12
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Figure 5: Comparison between generation methods for specific intervals.

Figure 7 and 8 are also plotted for method 6 and depict the quality of calibrated OD matrices by comparing it with13

the target and initial OD matrices on 45◦ plots. Overall, PC–SPSA is able to find a good quality solution and as per14

the property of PCA application (i.e., confining search space in historical OD variance) all OD pairs are close to the15

45◦ line. Note that PC-SPSA is able to calibrate the reduction change of the target demand (i.e., plots in figure fig. 716

are around the 45 %) but it is not able to entirely converge the error due to random fluctuations (Rand in equation17

18). This is an expected result when using PCA, as the PCs constraint the search space allowing for limited structural18

changes in the OD demand matrix. To understand better this behavior, we conduct a sensitivity analysis for different19

demand scenarios in section 4.2), and also compare the results from different historical OD generation methods which20

actually do behave differently for converging the random fluctuations (section 3.2.2).21

3.2.2. Comparing different historical OD generation methods22

Figure 5 deploys PC–SPSA’s convergence results using all historical OD generation methods and despite that all23

methods show different converging speed, they can converge to almost the same level of error. This indicates restricted24

requirements and robustness of PC–SPSA on the historical OD estimates with respect to final error convergence.25
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Figure 6: Comparison of target and calibrated traffic counts.
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Figure 7: Comparison of target and calibrated OD matrices.
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Figure 8: Comparison of initial and calibrated OD matrices.

However, in terms of the converging speed, the method capturing most correlations (method 6) and the methods1

considering only one–dimension correlation (method 1 and 2) outperform the others. For the latter, it is easy to2

understand as searching the pattern in a single correlated direction would be faster because the defined search space3

have more noise and randomness (local minimums). In contrary, when the correlations of two of three dimensions are4

fused (method 3, 4 and 5), they construct the search space with more accurate and sufficient information. Although5

the noise and randomness is reduced, now its presence probably hinders the SPSA algorithm to struggle finding the6

minimized solution. Surprisingly, method 6 which combines three dimension information, however, also leads to a7

fast convergence as method 1 and 2. This behavior may be due to the expectation that the space constructed by this8

method is more comprehensive and thus it directs the algorithm to find a faster direction compared with the ones with9

only two–dimensional information.10

To better understand the above stated comparison, we further compare all the historical OD generation methods by11

their calibration quality. Figure 9 illustrates the quality of calibration for all generation methods with fig. 9(a) showing12

the quality of calibrated OD (RMSNs comparing with target OD) and fig. 9(b) showing the final convergence error13

achieved for the whole demand period. Moreover, as mentioned previously, literature efforts only considered temporal14

correlations for historical OD generation i.e., method 2, and hence we also show comparison of its calibrated OD with15
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Figure 9: Comparison between all generation methods.
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Figure 10: Comparison of target and calibrated OD matrices (method 2).

the target OD in figure 10. By analyzing fig. 9(a), we can validate the above mentioned arguments about the effects1

of using more correlated information in generation methods. In general, considering multiple correlations leads to a2

reduction in the demand error (fig. 9(a)) and a similar error in term of traffic counts (fig. 9(a)). Method 6, the one3

considering the highest number of spatio/temporal correlations, not only shows a faster convergence but it is also the4

most consistent in terms of OD calibration quality (i.e., least RMSN error from target OD). At the other end of the5

scale, the methods considering only one correlation dimension (method 1 and 2) are the most inconsistent with poor6

quality OD estimates (see time intervals from 7 to 9 am), meaning that the faster convergence is mostly due to the model7

over fitting the data. Especially, figure 10 shows that the calibrated OD from method 2 is more scattered as compared8

to figure 7 for method 6 (further comparison of the calibrated OD quality for method 2 and 6 is shown in section 4.2).9

The methods with two correlations (method 4 and 5) have a medium range of OD quality. Perceiving these results, it10

can be established that creating the OD estimates with more correlation information helps in better calibration quality11

and having lesser random perturbation or noise also pushes towards faster convergence. Lastly, analyzing fig. 9(b), it12

can be seen that all different historical OD generation methods are able to eventually converge on very similar RMSN13

errors, validating the robustness of PC–SPSA algorithm convergence performance with different methods.14

3.2.3. Conventional versus simplified problem formulation15

Simplified problem formulation removes the error term z2 (between the calibrated and prior OD) from the conven-16

tional problem formulation equation 13. This is similar as setting thew2 weight as 0 % in equation 13, which otherwise17

if set as w2 >0 is following the conventional problem formulation. Figure 11 shows the convergence performance of18

PC–SPSA at different weight settings (i.e., 0%, 20%, 40% and 60% weight wod for z2). Similarly, figure 12(b) shows19

the least RMSN error achieved for traffic counts and figure 12(a) shows the OD solutions’ quality for all different20

weight settings. It is clearly evident that the simplified problem formulation outperforms all other weight settings for21

much faster convergence towards the least RMSN error. Another surprising outcome is from figure 12(a) where the22

simplified problem formulation also results good OD solution quality consistently. Only 20%wod gives better solution23
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quality for some intervals but this comes at the cost of an increased error in the traffic counts.1
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Figure 11: Comparison between objective weights for specific intervals.
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Figure 12: Comparison between different weights combination in the objective function.

Note that, all the mentioned results confirm that we can utilize the benefits of using PCA application (i.e., limit-2

ing SPSA search space within the variance of historical OD estimates) for simplifying the DODE objective function.3

Since PCA application adds the required demand information in the PCs, further constraining the calibrated OD with4

prior/starting OD will have a double restraining effect adding unnecessary burden in the objective function. More-5

over, even adding the weight wod does not result in better OD solution quality indicating that PCA includes the OD6

information in a more structural way. Note that, as we increase the wod weight for OD error term, the performance7
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of the algorithm detoriates either it is in terms of convergence (figure 11), the least RMSN error (figure 12(b)) or the1

OD solution quality (figure 12(a)). Lastly, Figure 7 and 8 (plotted for method 6) also provide supplementary results2

for simplified problem formulation (showing the quality of calibrated OD matrices by comparisons with the target and3

initial ODmatrices on 45◦ plots), where both plots show that the patterns of calibrated OD estimates are well estimated4

and are close to the target solution.5

4. Sensitivity analysis6

In this section, we perform sensitivity analysis on PC–SPSA with respect to SPSA parameters, demand conditions,7

and quality of historical estimates, respectively. The historical estimates are generated using method 6 (as per our8

analysis in section 3.2.2). Note that, the other parameters not specifically mentioned here remain the same as that in9

the previous section.10

4.1. Robustness against SPSA parameters definition11

In this section, we analyze the robustness of PC–SPSA against definition of SPSA hyper–parameters. SPSA is12

a random search stochastic algorithm and requires an appropriate definition of its hyper–parameters. These hyper–13

parameters can vary significantly for different problems and don’t have any universally identified set of values (guide-14

lines are given by Spall (1998)). Since SPSA parameters are only defined by trial–and–error method during implemen-15

tation, we observe its sensitivity for the PC–SPSA algorithm. Figure 13 shows the convergence plots for calibrating16

the Munich network case study with different set of c and a hyper–parameters. c is used for defining the perturbation17

step size, while a is used for minimization step (equation 17). Analyzing the results from fig. 13, PC–SPSA appears to18

be significantly less sensitive to varying SPSA hyper–parameters. The values used for both c and a vary significantly19

since they act as a percentage change instead of an absolute change. Although, the convergence rate is different among20

these hyper–parameter settings, all experiments converge to the a similar RMSN error value within a few iterations.21
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Figure 13: Comparison of using different SPSA parameter values (c and a).

We consider two reasons for PC–SPSA robust behavior, 1) the hyper–parameters act as the percentage change22

in perturbation and minimization (equation 15); and 2) faster convergence of PC–SPSA and properties of PC scores23

vector (i.e., very few estimation variables with even lesser being more significant). Also, since the rest of SPSA hyper–24

parameters i.e., 
 , � and A are used for evolving the gain sequence parameters over the number of iterations, we do not25

add their sensitivity analysis as PC–SPSA converges in a handful number of iterations; making it insensitive to their26

definition (we use the default values given by Spall (1998)). Overall, we can establish that PC–SPSA being robust,27

requires significantly less manual input or trail–and–error method for setup.28

4.2. Performance in different traffic conditions and demand fluctuations29

In this section, we analyze the performance of PC–SPSA in different traffic conditions and demand fluctuations.30

More specifically, we define different demand scenarios using eq. (18) and analyze PC–SPSA convergence. Here its31
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noteworthy to mention that, the historical demand matrixD is created using method 6 (section 2.2.2) with Rmin as 0.31

and Δod,t,d ∼ N(0, 0.333).2

Figure 14(a) shows the PC–SPSA performance under different network conditions, where Red coefficient (from3

eq. (18)) are set to 0.7 (70%), 0.9 (90%) and 1.2 (120%) in reference to starting/current OD matrix while keeping the4

Rand coefficient constant as 0.15 (15%). These set of variables result in target demands with three different traffic5

conditions i.e., less–congested, normal/congested, highly congested. Analyzing fig. 14(a), PC–SPSA converges well6

for the first two scenarios converging to a low RMSN error, but struggles to calibrate the highly congested scenario.7

The zig–zag behavior of its convergence is due to the use of traffic counts in congested state, which adds more noise8

in the objective function. This is a known result for demand calibration and this is why, for practical implementation,9

it is suggested to always use a matrix that is less congested than the target one. This can be easily done by comparing10

the simulated and observed traffic data. Still overall, PC–SPSA is able to converge the RMSN errors for all different11

traffic conditions.12
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Figure 14: Demand scenarios sensitivity (method 6)

Similarly, fig. 14(b) shows PC–SPSA performance while calibrating against different magnitudes of random fluctu-13

ations in target demand generated using multipleRand values in eq. (18), while fig. 15(a) illustrates the subsequent OD14

solution quality for all scenarios. As mentioned above theD historical data–set is generated withRmin as 0.3, hence the15

target demand generated equal or aboveRand = 0.3 should contain more significant demand fluctuations than what are16

present in D data–set. Analyzing the results from fig. 14(b) and fig. 15(a), PC–SPSA using method 6 with 30% Rmin17

is able to converge all demand fluctuations scenarios resulting in a low RMSN error but with varying solution quality18

(i.e., RMSN between calibrated and target OD). Comparing the scenarios results individually, Rand = 0 scenario has19

the target demand without any pattern changes and gets the best OD solution quality but PC–SPSA convergence is20

quite slower because the algorithm is still directly perturbing the OD patterns hence it also requires a few iterations to21

get back to closer solution (a reduced clone of initial OD). A similar convergence trend can been seen in Rand = 0.522

scenario, since the target demand patterns are highly fluctuated and is even more than the variance within historical23

demand D, hence it requires more time for converging to a low RMSN error and with poor OD solution quality (i.e.,24

the possible solution within the variance of historical estimates satisfying the traffic measurements).25

Note that, with the increase in Rand values both the OD solution quality and algorithm convergence performance26

deteriorates because the target solution has more demand fluctuations (i.e., higher Rand component) from initial OD.27

Hence, we can say that overall PCA–based methods have limited performance against estimating higher random de-28

mand fluctuations especially because the OD solution quality deteriorates significantly. Furthermore, figure 15 also29

compares the OD solutions’ quality for method 2 and 6, where the latter is able to result better OD solutions consistently30

against all scenarios. This comparison validates the argument that using all three correlations dimensions (method 6)31

helps in establishing the search space more structurally around the initial OD. It is also noteworthy to mention that,32

the fact that PC–SPSA has limited performance against random demand fluctuations also signifies the importance of33

the proposed data–assimilation framework which allows derivation of the correlations from other data sources to form34

more realistic search space for PCA–based calibration.35
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Figure 15: Best OD RMSN of scenarios with different randomness.

4.3. Historical estimates setup1

As already established, all PCA–based methods heavily rely on the quality of historical estimates. Previously, in2

section 2.2, we proposed a data assimilation framework to create estimates from an initial historical matrix for scenarios3

where they are unavailable or irrelevant. These established generation methods should also allow to control the quality4

of historical estimates and calibrated OD solution (in reference to starting/available OD estimates). In this section, we5

explore the effects of historical data–setD generation variables i.e., nd the number of days historical data–set contains,6

Rmin for resizing the variance within historical estimates and � (standard deviation) for Δ (i.e. the correlated random7

matrix) defining the shape of variance.8

4.3.1. Size of historical data–set9

The number of historical observations nd is an additional parameter to be calibrated when using PCA in the context10

of theDODE. Figure 16 illustrates the PC–SPSA performance upon using three different sizes ofD data–set. Analyzing11

these results, it is evident that the size ofD data–set influences the convergence plots (fig. 16a) as if the nd is too small12

or large, the convergence gets slower. Comparing the OD solution qualities for different D data–set sizes (fig. 16b),13

the increase in size seems to improve both the consistency and quality of estimated OD solution. The convergence14

results can be explained such that the size of D data–set defines the amount of variance which if is too small or large15

the algorithm needs more iterations for convergence, while given an appropriate set of nd historical estimates, the16

algorithm performs faster. This is proven by the fact that for nd = 10 both the convergence results and OD solution17

quality show larger fluctuations while on the other hand, a larger number of observations (nd = 200) shows a much18

more consistent quality, which is explained by capability of the model to better incorporate the structure of the demand.19

Overall, it can be established that small size of D data–set contains less variance directing the algorithm to converge20

slower and with random OD estimate quality, while as the number of observations in D data–set increase the amount21

of variance generated also increases which till a certain optimum value improves convergence but later with further22

increase the convergence requires more time due to larger search space. But enlarging the variance or search space23

always helps to improve the consistency in OD solution quality.24

4.3.2. Variance within historical data–set25

Next, we perform the sensitivity analysis on defining the variance of historical data–set D. Different set of values26

are used forRmin and � (i.e., the standard deviation for the Gaussian distributions defining ΔT coorelation) to generate27

historical data–set using method 6. Note that, the effect of changing both Rmin and � is quite similar with a minor28

difference, where Rmin widens/shrinks the shape of Gaussian distribution with increasing/decreasing the values of29

random distribution, � directly effects the distribution of random numbers. We also perform the analysis for calibrating30

two different target demand fluctuations, setting Rand in eq. (18) as 0.15 and 0.3, while the � is set to 0.333 (i.e.,31

� ∼ N(0, 0333). Figures 17 and 18 illustrates the convergence plots for both demand scenarios subsequently, while32

Figures 19 and 20 show the OD solution qualities for varying Rmin and � experiments.33

First analyzing the effect of varying Rmin values, the calibration convergence plots are similar to the demand34
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Figure 16: Historical data matrices size sensitivity.

fluctuation experiment from fig. 14(b) i.e., for scenarios where Rmin > Rand the convergence is much faster (see1

Rmin = 0.5) and for Rmin ≤ Rand, the convergence is slower (see Rmin = 0.3 for Rand = 0.3 scenario). While fig. 192

illustrates that lower Rmin setting results in better OD solution quality and as we increase Rmin, the error between3

target and calibrated OD also increase. The performance for varying Rmin is consistent with the previous results from4

section 4.2, i.e., if we use larger values, the variance space increases and the algorithm converges faster but to a poor5

quality solution (see fig. 19). Hence, given the results it can be said that the use of lower values for Rmin is more6

efficient unless either the solution is not converging and more variance space is required or a faster convergence is7

desired.8
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Figure 17: Demand scenarios sensitivity (scenario: Red = 0.7, Rand = 0.15).

Next, analyzing the effect of varying � values, the algorithm convergence is slower for both the smaller and larger9

� values and is more optimum for middle value of � = 0.3. Considering the OD solution qualities, note that similar10

to Rmin, lowest value of � result in the best calibrated ODs relative to the target solution. Hence, to achieve better11

calibration efficiency in solution quality, lower amount of variance is desirable. The convergence behavior of varying12

� is similar as of varying sizes of D data–set (fig. 16) which also control the amount of variance and the middle13

optimum size gave faster convergence. But, it is noteworthy to understand that controlling the variance through Rmin14

or � is more systematic which create a more restrictive search space around initial OD estimate generating better OD15

solution qualities.16

Comparing the results of varying Rmin and � experiments, first it is interesting to see that lower values of both17

parameters can converge much more fluctuating demand scenarios (i.e., with Rand = 0.5 and � =0.333). Then, also18
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Figure 18: Demand scenarios sensitivity (scenario: Red = 0.7, Rand = 0.3).
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Figure 19: OD RMSN with different Rmin.

note that, in comparison to the lower � value of 0.1 (with Rmin = 0.3), the setting of Rmin = 0.1 and � = 0.3 gives1

much faster convergence. Hence, we can conclude that restricting the generated variance by directly reducing the2

random vector distribution is less efficient than keeping the random vector generation more distributed using higher �3

and than tuning down the amount of variance by use of smaller Rmin values.4

4.4. Remarks5

The combination of PCA’s dimension and complexity reduction with simplified problem formulation gives sig-6

nificant boost to SPSA calibration performance. Also, the proposed framework for data-assimilation generation of7

historical estimates gives the flexibility to control the size and quality of generation historical variance i.e., the al-8

gorithm search space or directions for PCA–methods. Overall, the set of inputs required to use PC–SPSA in our9

proposed framework include: SPSA hyper–parameters (c, a, �, 
 , A), historical data–set generation parameters (gen-10

eration method, Rmin, nd , �) and PCA application parameters (amount of dimension reduction i.e., V to V̂ , temporal11

limits for combined PCA application). In sections 3.2 and 4, we performed a set of experiments on different parameter12

inputs for PC–SPSA setup. Analyzing the empirical outputs of these experiments, we enlist the guidelines in below13

sections which can be followed for efficient calibration setup.14

4.4.1. SPSA hyper–parameters15

Although Spall (1998) gave guidelines for defining appropriate SPSA parameters, their definition remain problem16

specific with no universal values for different DTA models. For PC–SPSA, the perturbation ck and minimization ak17
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Figure 20: OD RMSN with different �od and �t.

coefficient behave as percentage change instead of absolute, hence they can be set similar for varying DTAmodels even1

having different magnitudes of the decision variable. The results from section 4.1 depict that PC-SPSA is even robust2

for significantly varying values of c and a but they still effect the convergence speeds. Hence, for efficient performance3

of the algorithm, c can be set in range of 0.1-0.2 resulting in ck with 10-20% change at first iteration. Similarly, for4

setting a parameter, a range between 0.8-1.2 is optimum for the current network and using the RMSN as estimator5

but it depend on the resulting gradient values. Due to fast convergence, the other SPSA parameters �, 
 and, A are6

insignificant because they only control the evolution of gain sequence parameters (ck, ak) over the increasing number7

of iterations.8

4.4.2. Historical data–set generation9

The proposed data-assimilation framework generate historical OD data–sets using all different correlations present10

in time-dependent ODs. The set of inputs given in these generation methods include number of correlation dimensions11

or generation method, size nd of the historical estimates, Rmin to control size of generated variance and � to define the12

correlation distributions used to generate ΔT perturbation matrices. In 4.3, sensitivity analysis on each of these stated13

parameters are performed to understand their effect on calibration convergence and OD solution quality. Below are14

the stated guidelines to be followed for each parameter:15

• Generation method: Given the results in figure 9, method 6 which generates D data–set with all correlation16

dimensions outperform because of its consistency in convergence speeds and OD solution quality. Hence, it is17

recommended to use method 6 for implementing PCA–methods with the proposed data-assimilation framework.18

• Size of historical data–set: In section 4.3.1, analysis upon different sizes of historical data–set is performed.19

For faster convergence of DODE, the optimum size of generated D data–set should be around 3-4 months (90-20

120 prior days). Further, to improve the quality and consistency of OD solution qualityD data–set can be further21

extended to higher size but at an expense of reducing convergence speed.22

• Variance of historical data–set: Section 4.3.2 gives the analysis on defining different variance characteristics23

within generated D data–set. Two parameters (i.e., Rmin and �) are set to control the variance. Individually,24

smaller values of both parameters (around 0.1) result in optimum OD solution qualities as they restrict the25

generated variance closer to the seed OD matrix. In terms of convergence, higher values of Rmin always result26

in faster convergence but at an expense of more nosier/poor OD estimate, while very low or high � values show27

slower convergence, hence optimum value of � = 0.3 can result in faster convergence.28

For combined set of values for both Rmin and �, it is recommended to use larger � value in range 0.3 − 0.5 with29

smaller value of Rmin in range 0.1 − 0.15. This helps to generate a more distributed variance with higher � but30

with a much smaller size contained by lower values of Rmin. If convergence error results are not satisfactory,31

gradually increasing the Rmin value is recommended due to probabilities of larger fluctuations in target demand.32

Note that higher value of Rmin in such case with always reduce the OD solution quality.33
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4.4.3. PCA application1

The application of PCA on DODE has been covered previously in literature. Djukic et al. (2012) showed the2

detailed concept of PCA application on OD estimation. Later many other approaches followed the use of PCA to3

develop variants of conventional approaches (Prakash et al., 2017, 2018; Qurashi et al., 2019). Once the historical OD4

estimates are available, two main inputs are required for PCA application: 1) the amount of dimension reduction or5

the number of PCs retained 2) Temporal settings of historical estimates to apply PCA.6

The first input of PCs retained during dimension reduction (i.e, changes V to V̂ in 2) is commonly given in terms of7

the level of variance explained by the retained PCs. Since mostly the first few PCs are the most significant, explaining8

the majority of variance, a cumulative variance of 95% is set for reducing the PCs matrix V . The second input about9

temporal settings of historical data–set D is defined inside matrix x of eq. (6) in our proposed framework. This input10

is the number of nt time intervals set together for application of PCA. It is recommended to apply PCA for the time11

intervals which have a single activity pattern (e.g., morning or evening peak hours separately). It is also a work in12

progress for future research to do more systematic PCs extraction from discrete activity patterns and then use the13

combination of these PC-directions to do more efficient OD estimation.14

5. Conclusion15

In this paper, practical implementation methods for PCA–based calibration approaches are proposed and evaluated.16

The results suggest that these methods will facilitate the adoption of PCA-based methods for large–scale applications.17

PCA–based calibration has become a standard for improving the scalability of conventional algorithms towards large–18

scale DTA models. However, PCA implementation is based on the availability of historical estimates, which are19

usually not available in practise. This triggers a chicken and egg problem. To use PCA–based models there is a need20

for historical estimates, which can be obtained by calibrating the network. However, without PCA–based models it21

is not possible to calibrate large networks, therefore to have historical estimates. This is a major limitation of current22

PCA–based methodologies, which is addressed in this paper. In addition, while current approaches mostly focused on23

using PCA to reduce the number of variables in the problem, a significant gap still exists to exploit the properties of24

PCA based model calibration for simplifying the structure of the calibration process. Even when historical estimates25

are available, it is not clear to which extent the quality of these estimates influences prediction accuracy. This paper26

answers this question, bringing PCA-based algorithms one step closer to real–life applications.27

Themajor contribution of this research is to propose a data–assimilation framework which allows to incorporate the28

structure of the historical (seed) demand into the Principal Components (PCs) without the need for historical estimates.29

Such a framework allows the use of all PC-based algorithms proposed in the literature when historical data is irrelevant30

or unavailable (a standard case for large–scale networks). Based on this data–set generationmodel, a simplified problem31

formulation for Dynamic Origin Destination matrix Estimation (DODE) is also presented, which allows removing the32

demand from the objective function. These extensions have been tested using PC-SPSA, an algorithm that combines33

PCA with the well known Simultaneous Perturbation Stochastic Approximation (SPSA) model. The paper shows that34

a better exploitation of the PCA properties leads to an enhanced algorithm that achieves faster convergence and provide35

more robust results even on large urban networks. Different historical OD generation models have been proposed and36

tested in this paper, each of which accounts for different types of correlations between the variables. These correlations37

model spatial, temporal, and day to day changes in the demand. The results suggest that the method that uses all38

three correlations outperforms others for convergence speed, robustness of the results, and calibrated OD solution39

quality. Approaches that use only one of these correlations also provide very good results in terms of reproducing40

the traffic measurements. However, the results show that in this case PCA–models are more likely to over-fit the41

data, as the PCs cannot model correlations between the ODs properly. Although the proposed framework currently42

uses Gaussian distributions for presenting the correlations, it also provides the flexibility to use data–driven spatial–43

temporal correlations extracted from other data sources, representing more realistic structure of PCs which can better44

reflect the historical OD flows’ dynamics.45

In this paper, we tested the model on the network of Munich, one of the largest DTA models ever used as a cal-46

ibration case study. Even on such a scale (more than 8000 links and 20.000 variables to be calibrated), the results47

indicate that a very low number of iterations is required for convergence. Setting the model scale aside, the required48

number of simulations are still far less (around 10 simulation runs) when compared to conventional techniques like49

SPSA (almost 150-300 simulation runs) on much smaller networks. This is a crucial aspect, as a single simulation50

run for the Munich regional network can take several hours on high performance computing platforms and that, due51
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to the iterative nature of the DTA calibration problem, opportunities for parallel computing are limited. Further, the1

PC–SPSA implementation used in this research shows robustness towards the definition of SPSA hyper–parameters2

depicted through the empirical results of a conducted sensitivity analysis. The proposed approach allows to intro-3

duce domain specific knowledge within the PCA algorithm by using probability distributions to describe spatial and4

temporal correlations. These distribution are characterized by a mean and a variance, which becomes additional hyper–5

parameters to be calibrated. While this allows for more control over the OD solution quality, it also increase the number6

of hyper–parameters to be tuned. Tuning SPSA parameters is a trial and error procedure that can require significant7

amount of time and additional simulations. These findings are summarized in Section section 4.4, which introduces8

implementation guidelines for PC-SPSA. These guidelines can also be used to combine enhanced SPSA algorithms,9

such as the W–SPSA, and PCA.10

The research presented in this paper introduces the first building block to move PCA–based calibration models pro-11

posed in the literature from theory to practise. Existing works in fact rely on historical estimates of the demand, which12

are not necessarily always available. Based on the proposed concept of data-assimilation, many promising research13

directions are now opening up. In this paper, the data–assimilation framework is used to incorporate historical informa-14

tion within the PCs of the problem. In the future, we plan to use the same concept to incorporate synthetic populations,15

activity based models, and, in general, more information about the travel demand without increasing the complexity16

of the problem. A second interesting research direction is to incorporate different data sources, such as mobile phone17

network data, GPS trajectory data, and even social media data into the data–assimilation framework. Similarly to the18

historical demand, this procedure can allow to incorporate these data within the PCs, remove them from the objective19

function, and therefore significantly improve model performances. Another advantage of the proposed framework is20

that, beside reducing the number of variables, the proposed model drastically reduces the number of simulation runs21

required to calibrate the model. This is an important observation when the objective is to calibrate multimodal trans-22

port systems, where the number of variables to be calibrated as well as the simulation time are prohibitive already for23

small sized systems. Finally, traditional PCA–based are linear in their nature. However, there is not guarantee that data24

are linearly correlated, specifically when using different data sources or complex representations of travel behaviour,25

such as synthetic populations. Therefore, non linear PCA–based frameworks should also be investigated in the future.26
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Appendix A PC–SPSA algorithm1

Initialization at iteration 0
Estimate PCs: D = UΣV T

Definition SPSA hyper–parameters: c,a A, 
 , �
OD transformation to PC–scores: z0 = V̂ T x0

Gain sequence update at iteration k
ck = c∕k


ak = a∕(k + A)�

Perturbation
z±k = zk ± zk × ckΔ

OD approximation
x±k ≈ V̂ z

±
k

Gradient evaluation

g′k(xk) =
f (x+k ) − f (x

−
k )

2ck

[

Δ1 Δ2 . . Δp
]T

Minimization
zk+1 = zk − akg′k(xk)

OD approximation at convergence iteration 

x ≈ V̂ z

2
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